On Deciding Linear Arithmetic Constraints Over p-adic Integers for All Primes

Given an existential formula Φ of linear arithmetic over p-adic integers together with valuation constraints, we study the p-universality problem which consists of deciding whether Φ is satisfiable for all primes p, and the analogous problem for the closely related existential theory of Buchi arithmetic. Our main result is a coNEXP upper bound for both problems, together with a matching lower bound for existential Buchi arithmetic. On a technical level, our results are obtained from analysing properties of a certain class of p-automata, finite-state automata whose languages encode sets of tuples of natural numbers.

[1]  Herbert S. Wilf,et al.  A Circle-of-Lights Algorithm for the “Money-Changing Problem” , 1978 .

[2]  Thomas Sturm,et al.  Effective Quantifier Elimination for Presburger Arithmetic with Infinity , 2009, CASC.

[3]  Thomas Sturm,et al.  P-adic constraint solving , 1999, ISSAC '99.

[4]  J. Büchi Weak Second‐Order Arithmetic and Finite Automata , 1960 .

[5]  L. Lipshitz The Diophantine problem for addition and divisibility , 1978 .

[6]  Erich Grädel,et al.  Dominoes and the Complexity of Subclasses of Logical Theories , 1989, Ann. Pure Appl. Log..

[7]  Christoph Haase,et al.  The Taming of the Semi-Linear Set , 2016, ICALP.

[8]  Zdenek Sawa Efficient Construction of Semilinear Representations of Languages Accepted by Unary Nondeterministic Finite Automata , 2013, Fundam. Informaticae.

[9]  Markus Lohrey,et al.  Model-checking hierarchical structures , 2005, 20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05).

[10]  Joël Ouaknine,et al.  On the Complexity of Linear Arithmetic with Divisibility , 2015, 2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science.

[11]  Achim Blumensath,et al.  Automatic structures , 2000, Proceedings Fifteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.99CB36332).

[12]  Bernard R. Hodgson On Direct Products of Automaton Decidable Theories , 1982, Theor. Comput. Sci..

[13]  C. Michaux,et al.  LOGIC AND p-RECOGNIZABLE SETS OF INTEGERS , 1994 .

[14]  Loïc Pottier Minimal Solutions of Linear Diophantine Systems: Bounds and Algorithms , 1991, RTA.

[15]  Jaban Meher,et al.  Ramanujan's Proof of Bertrand's Postulate , 2013, Am. Math. Mon..

[16]  A. L. Semenov,et al.  Presburgerness of predicates regular in two number systems , 1977 .

[17]  Anil Nerode,et al.  Automatic Presentations of Structures , 1994, LCC.

[18]  Sylvain Schmitz,et al.  Complexity Hierarchies beyond Elementary , 2013, TOCT.

[19]  Carsten Lund,et al.  Non-deterministic exponential time has two-prover interactive protocols , 2005, computational complexity.

[20]  András Frank,et al.  An application of simultaneous diophantine approximation in combinatorial optimization , 1987, Comb..

[21]  Christoph Haase,et al.  On the Expressiveness of Büchi Arithmetic , 2020, ArXiv.

[22]  Christoph Haase,et al.  On the Existential Theories of Büchi Arithmetic and Linear p-adic Fields , 2019, 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[23]  J. Gathen,et al.  A bound on solutions of linear integer equalities and inequalities , 1978 .

[24]  A. E. Ingham ON THE ESTIMATION OF N(σ, T) , 1940 .

[25]  Alan Cobham,et al.  On the base-dependence of sets of numbers recognizable by finite automata , 1969, Mathematical systems theory.

[26]  Wang Wei On the least prime in an arithmetic progression , 1991 .

[27]  Christoph Haase,et al.  Subclasses of presburger arithmetic and the weak EXP hierarchy , 2014, CSL-LICS.

[28]  Pierre Wolper,et al.  On the Construction of Automata from Linear Arithmetic Constraints , 2000, TACAS.