The CAM cancer xenograft as a model for initial evaluation of MR labelled compounds

[1]  F. Kiessling,et al.  Noninvasive Imaging of Nanomedicines and Nanotheranostics: Principles, Progress, and Prospects. , 2015, Chemical reviews.

[2]  V. Rasche,et al.  High‐resolution MRI analysis of breast cancer xenograft on the chick chorioallantoic membrane , 2015, NMR in biomedicine.

[3]  M. Rudin,et al.  A new in vivo magnetic resonance imaging method to noninvasively monitor and quantify the perfusion capacity of three-dimensional biomaterials grown on the chorioallantoic membrane of chick embryos. , 2015, Tissue engineering. Part C, Methods.

[4]  Kivrak PfiffnerFatma,et al.  A new in vivo magnetic resonance imaging method to noninvasively monitor and quantify the perfusion capacity of three-dimensional biomaterials grown on the chorioallantoic membrane of chick embryos. , 2015 .

[5]  O. Feron,et al.  Dynamic contrast‐enhanced MRI in mouse tumors at 11.7 T: comparison of three contrast agents with different molecular weights to assess the early effects of combretastatin A4 , 2014, NMR in biomedicine.

[6]  K. Landfester,et al.  Amino-functionalized nanoparticles as inhibitors of mTOR and inducers of cell cycle arrest in leukemia cells. , 2014, Biomaterials.

[7]  Yuping Yang,et al.  Design, synthesis, and in vitro evaluation of a binary targeting MRI contrast agent for imaging tumor cells , 2014, Amino Acids.

[8]  C. Buske,et al.  A Core–Shell Albumin Copolymer Nanotransporter for High Capacity Loading and Two‐Step Release of Doxorubicin with Enhanced Anti‐Leukemia Activity , 2013, Advanced healthcare materials.

[9]  S. Morad,et al.  A Novel Semisynthetic Inhibitor of the FRB Domain of Mammalian Target of Rapamycin Blocks Proliferation and Triggers Apoptosis in Chemoresistant Prostate Cancer Cells , 2013, Molecular Pharmacology.

[10]  Crispin R Dass,et al.  Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems , 2013, The Journal of pharmacy and pharmacology.

[11]  Y. Zhang,et al.  Critical role of arachidonic acid-activated mTOR signaling in breast carcinogenesis and angiogenesis , 2013, Oncogene.

[12]  H. Moses,et al.  Lack of transforming growth factor-β signaling promotes collective cancer cell invasion through tumor-stromal crosstalk , 2012, Breast Cancer Research.

[13]  Lixin Sun,et al.  Pristimerin, a Triterpenoid, Inhibits Tumor Angiogenesis by Targeting VEGFR2 Activation , 2012, Molecules.

[14]  S. Morad,et al.  (8R)-3β,8-dihydroxypolypoda-13E,17E,21-triene induces cell cycle arrest and apoptosis in treatment-resistant prostate cancer cells. , 2011, Journal of natural products.

[15]  A. Zijlstra,et al.  Quantitative analysis of cancer metastasis using an avian embryo model. , 2011, Journal of visualized experiments : JoVE.

[16]  Marc-André Fortin,et al.  Ultra-small gadolinium oxide nanoparticles to image brain cancer cells in vivo with MRI. , 2010, Contrast media & molecular imaging.

[17]  J. Vymazal,et al.  Multicenter, double-blind, randomized, intraindividual crossover comparison of gadobenate dimeglumine and gadopentetate dimeglumine for MR angiography of peripheral arteries. , 2010, Radiology.

[18]  S. Morad,et al.  Tirucallic Acids Are Novel Pleckstrin Homology Domain-Dependent Akt Inhibitors Inducing Apoptosis in Prostate Cancer Cells , 2010, Molecular Pharmacology.

[19]  James P. Quigley,et al.  Chick embryo chorioallantoic membrane model systems to study and visualize human tumor cell metastasis , 2008, Histochemistry and Cell Biology.

[20]  S. Fulda,et al.  Targeting XIAP bypasses Bcl-2-mediated resistance to TRAIL and cooperates with TRAIL to suppress pancreatic cancer growth in vitro and in vivo. , 2008, Cancer research.

[21]  M. Goyen,et al.  Gadofosveset-enhanced magnetic resonance angiography , 2008, Vascular health and risk management.

[22]  T. Syrovets,et al.  Characterization of 3 alpha-acetyl-11-keto-alpha-boswellic acid, a pentacyclic triterpenoid inducing apoptosis in vitro and in vivo , 2006 .

[23]  Nicholas J Long,et al.  Lanthanides in magnetic resonance imaging. , 2006, Chemical Society reviews.

[24]  A. Wiethoff,et al.  Initial imaging recommendations for Vasovist angiography , 2006, European radiology.

[25]  S. Schoenberg,et al.  Vasovist-enhanced MR angiography , 2006, European radiology.

[26]  Kalayaan V. Bilbao,et al.  THE CHICK CHORIOALLANTOIC MEMBRANE AS A MODEL TISSUE FOR SURGICAL RETINAL RESEARCH AND SIMULATION , 2004, Retina.

[27]  T. M. Yelbuz,et al.  Improved preparation of chick embryonic samples for magnetic resonance microscopy , 2003, Magnetic resonance in medicine.

[28]  Andries Zijlstra,et al.  A quantitative analysis of rate-limiting steps in the metastatic cascade using human-specific real-time polymerase chain reaction. , 2002, Cancer research.

[29]  R E Poelmann,et al.  Magnetic resonance microscopy at 17.6‐Tesla on chicken embryos in vitro , 2001, Journal of magnetic resonance imaging : JMRI.

[30]  Viktor Hamburger,et al.  A series of normal stages in the development of the chick embryo , 1992, Journal of morphology.

[31]  S. Jeurissen,et al.  Ontogeny and function of two non-lymphoid cell populations in the chicken embryo. , 1991, Immunobiology.

[32]  W. Pardridge,et al.  Absorptive-mediated endocytosis of cationized albumin and a beta-endorphin-cationized albumin chimeric peptide by isolated brain capillaries. Model system of blood-brain barrier transport. , 1987, The Journal of biological chemistry.

[33]  C. Kind The development of the circulating blood volume of the chick embryo , 1975, Anatomy and Embryology.

[34]  J. Folkman,et al.  Differentiation of vascular endothelium in the chick chorioallantois: a structural and autoradiographic study. , 1974, Developmental biology.

[35]  N. Rioux-Leclercq,et al.  The experimental renal cell carcinoma model in the chick embryo , 2012, Angiogenesis.

[36]  T. Syrovets,et al.  Characterization of 3alpha-acetyl-11-keto-alpha-boswellic acid, a pentacyclic triterpenoid inducing apoptosis in vitro and in vivo. , 2006, Planta Medica.

[37]  Meng Yang,et al.  Development of a green fluorescent protein metastatic-cancer chick-embryo drug-screen model , 2004, Clinical & Experimental Metastasis.

[38]  J R Griffiths,et al.  Assessment of antiangiogenic and antivascular therapeutics using MRI: recommendations for appropriate methodology for clinical trials. , 2003, The British journal of radiology.

[39]  S. Williams,et al.  Assessment of anti-angiogenic and anti-vascular therapeutics using Magnetic Resonance Imaging: recommendations for appropriate methodology for clinical trials. , 2003 .

[40]  V. Hamburger,et al.  A series of normal stages in the development of the chick embryo. 1951. , 2012, Developmental dynamics : an official publication of the American Association of Anatomists.