Cops and Robbers on Graphs Based on Designs

We investigate the cop number of graphs based on combinatorial designs. Incidence graphs, point graphs, and block intersection graphs are studied, with an emphasis on finding families of graphs with large cop number. We generalize known results on Meyniel extremal families by supplying bounds on the incidence graphs of transversal designs, certain G-designs, and BIBDs with Families of graphs with diameter 2, C4-free, and with unbounded chromatic number are described with the conjectured asymptotically maximum cop number.

[1]  A. Bonato,et al.  Meyniel’s conjecture on the cop number: A survey , 2013, 1308.3385.

[2]  Peter Winkler,et al.  Vertex-to-vertex pursuit in a graph , 1983, Discret. Math..

[3]  Linyuan Lu,et al.  On Meyniel's conjecture of the cop number , 2012, J. Graph Theory.

[4]  Tchébichef,et al.  Mémoire sur les nombres premiers. , 1852 .

[5]  A. Rényii,et al.  ON A PROBLEM OF GRAPH THEORY , 1966 .

[6]  C. Colbourn,et al.  Handbook of Combinatorial Designs , 2006 .

[7]  Rolf S. Rees,et al.  Truncated Transversal Designs: A New Lower Bound on the Number of Idempotent MOLS of Side n , 2000, J. Comb. Theory, Ser. A.

[8]  W. G. Brown On Graphs that do not Contain a Thomsen Graph , 1966, Canadian Mathematical Bulletin.

[9]  Chris D. Godsil,et al.  Eigenvalue bounds for independent sets , 2008, J. Comb. Theory, Ser. B.

[10]  David A. Pike,et al.  Pancyclic BIBD block-intersection graphs , 2004, Discret. Math..

[11]  D. West Introduction to Graph Theory , 1995 .

[12]  Jason S. Williford,et al.  On the independence number of the Erdos-Rényi and projective norm graphs and a related hypergraph , 2007 .

[13]  J. Thas Combinatorics of Partial Geometries and Generalized Quadrangles , 1977 .

[14]  Pawel Pralat When does a random graph have constant cop number? , 2010, Australas. J Comb..

[15]  R. C. Bose,et al.  On the construction of sets of mutually orthogonal Latin squares and the falsity of a conjecture of Euler , 1960 .

[16]  Peter Adams,et al.  A survey on the existence of G‐Designs , 2008 .

[17]  Zoltán Füredi,et al.  On the Number of Edges of Quadrilateral-Free Graphs , 1996, J. Comb. Theory, Ser. B.

[18]  P. Dembowski Finite geometries , 1997 .

[19]  R. Denniston Some maximal arcs in finite projective planes , 1969 .

[20]  Martin Aigner,et al.  A game of cops and robbers , 1984, Discret. Appl. Math..

[21]  Anthony Bonato,et al.  The Game of Cops and Robbers on Graphs , 2011 .

[22]  吉岡 智晃 Strongly Regular Graphs and Partial Geometries , 1993 .