Cops and Robbers on Graphs Based on Designs
暂无分享,去创建一个
[1] A. Bonato,et al. Meyniel’s conjecture on the cop number: A survey , 2013, 1308.3385.
[2] Peter Winkler,et al. Vertex-to-vertex pursuit in a graph , 1983, Discret. Math..
[3] Linyuan Lu,et al. On Meyniel's conjecture of the cop number , 2012, J. Graph Theory.
[4] Tchébichef,et al. Mémoire sur les nombres premiers. , 1852 .
[5] A. Rényii,et al. ON A PROBLEM OF GRAPH THEORY , 1966 .
[6] C. Colbourn,et al. Handbook of Combinatorial Designs , 2006 .
[7] Rolf S. Rees,et al. Truncated Transversal Designs: A New Lower Bound on the Number of Idempotent MOLS of Side n , 2000, J. Comb. Theory, Ser. A.
[8] W. G. Brown. On Graphs that do not Contain a Thomsen Graph , 1966, Canadian Mathematical Bulletin.
[9] Chris D. Godsil,et al. Eigenvalue bounds for independent sets , 2008, J. Comb. Theory, Ser. B.
[10] David A. Pike,et al. Pancyclic BIBD block-intersection graphs , 2004, Discret. Math..
[11] D. West. Introduction to Graph Theory , 1995 .
[12] Jason S. Williford,et al. On the independence number of the Erdos-Rényi and projective norm graphs and a related hypergraph , 2007 .
[13] J. Thas. Combinatorics of Partial Geometries and Generalized Quadrangles , 1977 .
[14] Pawel Pralat. When does a random graph have constant cop number? , 2010, Australas. J Comb..
[15] R. C. Bose,et al. On the construction of sets of mutually orthogonal Latin squares and the falsity of a conjecture of Euler , 1960 .
[16] Peter Adams,et al. A survey on the existence of G‐Designs , 2008 .
[17] Zoltán Füredi,et al. On the Number of Edges of Quadrilateral-Free Graphs , 1996, J. Comb. Theory, Ser. B.
[18] P. Dembowski. Finite geometries , 1997 .
[19] R. Denniston. Some maximal arcs in finite projective planes , 1969 .
[20] Martin Aigner,et al. A game of cops and robbers , 1984, Discret. Appl. Math..
[21] Anthony Bonato,et al. The Game of Cops and Robbers on Graphs , 2011 .
[22] 吉岡 智晃. Strongly Regular Graphs and Partial Geometries , 1993 .