The Foreground-Background queue: A survey

Computer systems researchers have begun to apply the Foreground-Background (FB) scheduling discipline to a variety of applications, and as a result, there has been a resurgence in theoretical research studying FB. In this paper, we bring together results from both of these research streams to provide a survey of state-of-the-art theoretical results characterizing the performance of FB. Our emphasis throughout is on the impact of these results on computer systems.

[1]  Guillaume Urvoy-Keller,et al.  Performance analysis of LAS-based scheduling disciplines in a packet switched network , 2004, SIGMETRICS '04/Performance '04.

[2]  Idris A. Rai,et al.  High Speed Networks and Multimedia Communications , 2004, Lecture Notes in Computer Science.

[3]  Robert B. Cooper,et al.  Queueing systems, volume II: computer applications : By Leonard Kleinrock. Wiley-Interscience, New York, 1976, xx + 549 pp. , 1977 .

[4]  B. Avi-Itzhak,et al.  On measuring fairness in queues , 2004, Advances in Applied Probability.

[5]  J. Teugels,et al.  On the asymptotic behaviour of the distributions of the busy period and service time in M/G/1 , 1980, Journal of Applied Probability.

[6]  J. Shanthikumar,et al.  On extremal service disciplines in single-stage queueing systems , 1990, Journal of Applied Probability.

[7]  Moshe Shaked,et al.  Stochastic orders and their applications , 1994 .

[8]  Urtzi Ayesta,et al.  Mean Delay Analysis of Multi Level Processor Sharing Disciplines , 2006, Proceedings IEEE INFOCOM 2006. 25TH IEEE International Conference on Computer Communications.

[9]  Benjamin Avi-Itzhak,et al.  A resource-allocation queueing fairness measure , 2004, SIGMETRICS '04/Performance '04.

[10]  J. George Shanthikumar,et al.  Scheduling Multiclass Single Server Queueing Systems to Stochastically Maximize the Number of Successful Departures , 1989, Probability in the Engineering and Informational Sciences.

[11]  Peter Baer Galvin,et al.  Applied Operating System Concepts , 1999 .

[12]  Guillaume Urvoy-Keller,et al.  Size-based scheduling to improve the performance of short TCP flows , 2005, IEEE Network.

[13]  A. P. Zwart,et al.  Sojourn time asymptotics in the M/G/1 processor sharing queue , 1998, Queueing Syst. Theory Appl..

[14]  J. Shanthikumar,et al.  Extremal properties of the FIFO discipline in queueing networks , 1992, Journal of Applied Probability.

[15]  Peter J. Denning,et al.  Operating Systems Theory , 1973 .

[16]  Nikhil Bansal,et al.  Handling load with less stress , 2006, Queueing Syst. Theory Appl..

[17]  Adam Wierman,et al.  Fairness and classifications , 2007, PERV.

[18]  Werner Sandmann,et al.  Analysis of a queueing fairness measure , 2006, MMB.

[19]  Adam Wierman,et al.  Classifying scheduling policies with respect to higher moments of conditional response time , 2005, SIGMETRICS '05.

[20]  S. Aalto,et al.  On the nonoptimality of the foreground-background discipline for IMRL service times , 2006, Journal of Applied Probability.

[21]  Vishal Misra,et al.  Mixed scheduling disciplines for network flows , 2003, PERV.

[22]  Linus Schrage,et al.  The Queue M/G/1 With Feedback to Lower Priority Queues , 1967 .

[23]  Christian M. Ernst,et al.  Multi-armed Bandit Allocation Indices , 1989 .

[24]  Guillaume Urvoy-Keller,et al.  Performance Models for LAS-based Scheduling Disciplines in a Packet Switched Network , 2004 .

[25]  Rolf Schassberger,et al.  On the M/G/1 foreground-background processor-sharing queue , 1989, Queueing Syst. Theory Appl..

[26]  Dan Rubenstein,et al.  PBS: A Unified Priority-Based CPU Scheduler , 2007 .

[27]  M. F. M. Nuyens The Maximum Queue Length for Heavy-Tailed Service Times in the M/G/1 FB Queue , 2004, Queueing Syst. Theory Appl..

[28]  Rong Wu,et al.  Scheduling Multi-Server Systems Using Foreground-Background Processing , 2004 .

[29]  Vishal Misra,et al.  PBS: a unified priority-based scheduler , 2007, SIGMETRICS '07.

[30]  Alain Jean-Marie,et al.  On the transient behavior of the processor sharing queue , 1994, Queueing Syst. Theory Appl..

[31]  M. Hui,et al.  How Does Waiting Duration Information Influence Customers' Reactions to Waiting for Services?1 , 1996 .

[32]  F. Kelly,et al.  Stochastic networks : theory and applications , 1996 .

[33]  Sem C. Borst,et al.  Sojourn time asymptotics in processor-sharing queues , 2006, Queueing Syst. Theory Appl..

[34]  Linus Schrage,et al.  Letter to the Editor - A Proof of the Optimality of the Shortest Remaining Processing Time Discipline , 1968, Oper. Res..

[35]  S. Asmussen Extreme Value Theory for Queues Via Cycle Maxima , 1998 .

[36]  S. Wittevrongel,et al.  Queueing Systems , 2019, Introduction to Stochastic Processes and Simulation.

[37]  Vishal Misra,et al.  On the relationship between coefficient of variation and the performance of M/G/1-FB queues , 2004, PERV.

[38]  Guillaume Urvoy-Keller,et al.  Analysis of LAS scheduling for job size distributions with high variance , 2003, SIGMETRICS '03.

[39]  Adam Wierman,et al.  Preventing Large Sojourn Times Using SMART Scheduling , 2008, Oper. Res..

[40]  J. Bather,et al.  Multi‐Armed Bandit Allocation Indices , 1990 .

[41]  G. J. A. Stern,et al.  Queueing Systems, Volume 2: Computer Applications , 1976 .

[42]  R. Schassberger The steady-state distribution of spent service times present in the M/G/ 1 foreground–background processor-sharing queue , 1988 .

[43]  Urtzi Ayesta,et al.  Two-level processor-sharing scheduling disciplines: mean delay analysis , 2004, SIGMETRICS '04/Performance '04.

[44]  Linus Schrage,et al.  The Queue M/G/1 with the Shortest Remaining Processing Time Discipline , 1966, Oper. Res..

[45]  J. M. McKinney,et al.  A Survey of Analytical Time-Sharing Models , 1969, CSUR.

[46]  M.F.M. Nuijens The Foreground-Background Queue , 2004 .

[47]  Vincent Hodgson,et al.  The Single Server Queue. , 1972 .

[48]  Adam Wierman,et al.  Nearly insensitive bounds on SMART scheduling , 2005, SIGMETRICS '05.

[49]  Daryl J. Daley,et al.  An Introduction to the Theory of Point Processes , 2013 .

[50]  Onno Boxma,et al.  SOJOURN TIME TAILS IN THE M/D/1 PROCESSOR SHARING QUEUE , 2006, Probability in the Engineering and Informational Sciences.

[51]  Sem C. Borst,et al.  Stability of size-based scheduling disciplines in resource-sharing networks , 2005, Perform. Evaluation.

[52]  Mor Harchol-Balter,et al.  Size-based scheduling to improve web performance , 2003, TOCS.

[53]  Adam Wierman,et al.  Classifying scheduling policies with respect to unfairness in an M/GI/1 , 2003, SIGMETRICS '03.

[54]  S.C.J. Verwijmeren,et al.  Stability of an M|G|1 queue with thick tails and excess capacity , 2000 .

[55]  M. Mandjes,et al.  SOJOURN TIMES IN THE M/G/1 FB QUEUE WITH LIGHT-TAILED SERVICE TIMES , 2003, Probability in the Engineering and Informational Sciences.

[56]  Walter Willinger,et al.  A Bibliographical Guide to Self-Similar Traffic and Performance Modeling for Modern High-Speed Netwo , 1996 .

[57]  S. F. Yashkov Mathematical problems in the theory of shared-processor systems , 1992 .

[58]  Michel Mandjes,et al.  Large deviations of sojourn times in processor sharing queues , 2006, Queueing Syst. Theory Appl..

[59]  Urtzi Ayesta,et al.  M/G/1/MLPS compared to M/G/1/PS , 2005, Oper. Res. Lett..

[60]  B. Kahn,et al.  How Tolerable is Delay? Consumers’ Evaluations of Internet Web Sites after Waiting , 1998 .

[61]  Bert Zwart,et al.  A large-deviations analysis of the GI/GI/1 SRPT queue , 2005, Queueing Syst. Theory Appl..

[62]  W. Sandmann,et al.  A discrimination frequency based queueing fairness measure with regard to job seniority and service requirement , 2005, Next Generation Internet Networks, 2005.

[63]  Benjamin Avi-Itzhak,et al.  On the twin measure and system predictability and fairness , 2006, PERV.

[64]  Adam Wierman,et al.  Competitive Analysis of M/GI/1 Queueing Policies , 2003 .

[65]  Urtzi Ayesta,et al.  Mean delay optimization for the M/G/1 queue with pareto type service times , 2007, SIGMETRICS '07.

[66]  Fabrice Guillemin,et al.  Tail asymptotics for processor-sharing queues , 2004, Advances in Applied Probability.

[67]  Adam Wierman,et al.  A note on comparing response times in the M/GI/1/FB and M/GI/1/PS queues , 2004, Oper. Res. Lett..

[68]  Sem C. Borst,et al.  The impact of the service discipline on delay asymptotics , 2003, Perform. Evaluation.

[69]  Rudesindo Núñez-Queija,et al.  Queues with Equally Heavy Sojourn Time and Service Requirement Distributions , 2002 .

[70]  Guillaume Urvoy-Keller,et al.  LAS Scheduling to Avoid Bandwidth Hogging in Heterogeneous TCP Networks , 2004, HSNMC.

[71]  Anthony Unwin,et al.  Reversibility and Stochastic Networks , 1980 .

[72]  Azer Bestavros,et al.  Self-similarity in World Wide Web traffic: evidence and possible causes , 1996, SIGMETRICS '96.

[73]  R. Núñez Queija,et al.  Processor-Sharing Models for Integrated-Services Networks , 2000 .

[74]  Paul Farmer,et al.  Medicine and social justice. , 1995, America.

[75]  Edward G. Coffman,et al.  Feedback Queueing Models for Time-Shared Systems , 1968, J. ACM.

[76]  G. Klimov Time-Sharing Service Systems. I , 1975 .

[77]  S. F. Yashkov,et al.  Processor-sharing queues: Some progress in analysis , 1987, Queueing Syst. Theory Appl..

[78]  Adam Wierman,et al.  Asymptotic convergence of scheduling policies with respect to slowdown , 2002, Perform. Evaluation.

[79]  Patrick Brown,et al.  Comparing FB and PS scheduling policies , 2006, PERV.