25th Anniversary Article: Understanding the Lithiation of Silicon and Other Alloying Anodes for Lithium‐Ion Batteries

Alloying anodes such as silicon are promising electrode materials for next‐generation high energy density lithium‐ion batteries because of their ability to reversibly incorporate a high concentration of Li atoms. However, alloying anodes usually exhibit a short cycle life due to the extreme volumetric and structural changes that occur during lithium insertion/extraction; these transformations cause mechanical fracture and exacerbate side reactions. To solve these problems, there has recently been significant attention devoted to creating silicon nanostructures that can accommodate the lithiation‐induced strain and thus exhibit high Coulombic efficiency and long cycle life. In parallel, many experiments and simulations have been conducted in an effort to understand the details of volumetric expansion, fracture, mechanical stress evolution, and structural changes in silicon nanostructures. The fundamental materials knowledge gained from these studies has provided guidance for designing optimized Si electrode structures and has also shed light on the factors that control large‐volume change solid‐state reactions. In this paper, we review various fundamental studies that have been conducted to understand structural and volumetric changes, stress evolution, mechanical properties, and fracture behavior of nanostructured Si anodes for lithium‐ion batteries and compare the reaction process of Si to other novel anode materials.

[1]  J. Cabana,et al.  Monodisperse Sn nanocrystals as a platform for the study of mechanical damage during electrochemical reactions with Li. , 2013, Nano letters.

[2]  Yang Liu,et al.  Tough germanium nanoparticles under electrochemical cycling. , 2013, ACS nano.

[3]  Hongwei Liao,et al.  A beaded-string silicon anode. , 2013, ACS nano.

[4]  Yi Cui,et al.  In situ TEM of two-phase lithiation of amorphous silicon nanospheres. , 2013, Nano letters.

[5]  Yang Liu,et al.  Two-phase electrochemical lithiation in amorphous silicon. , 2013, Nano letters.

[6]  Jian Yu Huang,et al.  Self-limiting lithiation in silicon nanowires. , 2012, ACS nano.

[7]  Yi Cui,et al.  Reaction Front Evolution during Electrochemical Lithiation of Crystalline Silicon Nanopillars , 2012 .

[8]  Yi Cui,et al.  Studying the Kinetics of Crystalline Silicon Nanoparticle Lithiation with In Situ Transmission Electron Microscopy , 2012, Advanced materials.

[9]  Z. Suo,et al.  Fracture and debonding in lithium-ion batteries with electrodes of hollow core–shell nanostructures , 2012 .

[10]  S. T. Picraux,et al.  In situ atomic-scale imaging of electrochemical lithiation in silicon. , 2012, Nature nanotechnology.

[11]  A. Kushima,et al.  Quantitative fracture strength and plasticity measurements of lithiated silicon nanowires by in situ TEM tensile experiments. , 2012, ACS nano.

[12]  Hui Wu,et al.  Designing nanostructured Si anodes for high energy lithium ion batteries , 2012 .

[13]  C. Wolverton,et al.  First principles simulations of the electrochemical lithiation and delithiation of faceted crystalline silicon. , 2012, Journal of the American Chemical Society.

[14]  Z. Suo,et al.  Kinetics of initial lithiation of crystalline silicon electrodes of lithium-ion batteries. , 2012, Nano letters.

[15]  J. B. Ratchford,et al.  Young's modulus of polycrystalline Li12Si7 using nanoindentation testing , 2012 .

[16]  E. Kaxiras,et al.  Reactive flow in silicon electrodes assisted by the insertion of lithium. , 2012, Nano letters.

[17]  Ting Zhu,et al.  In Situ TEM Experiments of Electrochemical Lithiation and Delithiation of Individual Nanostructures , 2012 .

[18]  F. Gao,et al.  A finite deformation stress-dependent chemical potential and its applications to lithium ion batteries , 2012 .

[19]  Oliver Kraft,et al.  In situ cycling and mechanical testing of silicon nanowire anodes for lithium-ion battery applications , 2012 .

[20]  Ji‐Guang Zhang,et al.  Hollow core–shell structured porous Si–C nanocomposites for Li-ion battery anodes , 2012 .

[21]  M. Stanley Whittingham,et al.  History, Evolution, and Future Status of Energy Storage , 2012, Proceedings of the IEEE.

[22]  Michael F Toney,et al.  In situ X-ray diffraction studies of (de)lithiation mechanism in silicon nanowire anodes. , 2012, ACS nano.

[23]  Hui Wu,et al.  A yolk-shell design for stabilized and scalable li-ion battery alloy anodes. , 2012, Nano letters.

[24]  Yi Cui,et al.  Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. , 2012, Nature nanotechnology.

[25]  Yi Cui,et al.  The effect of metallic coatings and crystallinity on the volume expansion of silicon during electrochemical lithiation/delithiation , 2012 .

[26]  Tianyou Zhai,et al.  Revealing the conversion mechanism of CuO nanowires during lithiation-delithiation by in situ transmission electron microscopy. , 2012, Chemical communications.

[27]  Jian Yu Huang,et al.  Orientation-dependent interfacial mobility governs the anisotropic swelling in lithiated silicon nanowires. , 2012, Nano letters.

[28]  Fei Gao,et al.  In situ TEM investigation of congruent phase transition and structural evolution of nanostructured silicon/carbon anode for lithium ion batteries. , 2012, Nano letters.

[29]  Yi Cui,et al.  Fracture of crystalline silicon nanopillars during electrochemical lithium insertion , 2012, Proceedings of the National Academy of Sciences.

[30]  Yong Min Lee,et al.  Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes. , 2012, Nano letters.

[31]  Jian Yu Huang,et al.  Size-dependent fracture of silicon nanoparticles during lithiation. , 2011, ACS nano.

[32]  Xingcheng Xiao,et al.  Stress Contributions to Solution Thermodynamics in Li-Si Alloys , 2012 .

[33]  Vivek B. Shenoy,et al.  Pressure-Gradient Dependent Diffusion and Crack Propagation in Lithiated Silicon Nanowires , 2012 .

[34]  B. Wei,et al.  Silicon Thin Films as Anodes for High‐Performance Lithium‐Ion Batteries with Effective Stress Relaxation , 2012 .

[35]  E. Kaxiras,et al.  Concurrent Reaction and Plasticity during Initial Lithiation of Crystalline Silicon in Lithium-Ion Batteries , 2012 .

[36]  J. Choi,et al.  Nanomechanical properties of lithiated Si nanowires probed with atomic force microscopy , 2011 .

[37]  Brandon R. Long,et al.  The First-Cycle Electrochemical Lithiation of Crystalline Ge: Dopant and Orientation Dependence and Comparison with Si , 2011 .

[38]  P. Sanders,et al.  Fracture of nanostructured Sn/C anodes during Li-insertion , 2011 .

[39]  K. Maute,et al.  Effects of electrode particle morphology on stress generation in silicon during lithium insertion , 2011 .

[40]  Nae-Lih Wu,et al.  Study on Microstructural Deformation of Working Sn and SnSb Anode Particles for Li-Ion Batteries by in Situ Transmission X-ray Microscopy , 2011 .

[41]  G. Yushin,et al.  A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries , 2011, Science.

[42]  Guang Zhu,et al.  Leapfrog cracking and nanoamorphization of ZnO nanowires during in situ electrochemical lithiation. , 2011, Nano letters.

[43]  Claus Daniel,et al.  A study of lithium ion intercalation induced fracture of silicon particles used as anode material in Li-ion battery , 2011 .

[44]  G. Hwang,et al.  A Comparative First-Principles Study of the Structure, Energetics, and Properties of Li–M (M = Si, Ge, Sn) Alloys , 2011 .

[45]  H. Ghassemi,et al.  In situ electrochemical lithiation/delithiation observation of individual amorphous Si nanorods. , 2011, ACS nano.

[46]  J. B. Ratchford,et al.  Young's modulus of polycrystalline Li22Si5 , 2011 .

[47]  Yi Cui,et al.  Size-dependent fracture of Si nanowire battery anodes , 2011 .

[48]  S. T. Picraux,et al.  Reversible nanopore formation in Ge nanowires during lithiation-delithiation cycling: an in situ transmission electron microscopy study. , 2011, Nano letters.

[49]  Hui Wu,et al.  Novel size and surface oxide effects in silicon nanowires as lithium battery anodes. , 2011, Nano letters.

[50]  Tanmay K. Bhandakkar,et al.  Cohesive modeling of crack nucleation in a cylindrical electrode under axisymmetric diffusion induced stresses , 2011 .

[51]  Mark W. Verbrugge,et al.  Stress Mitigation during the Lithiation of Patterned Amorphous Si Islands , 2011 .

[52]  V. Srinivasan,et al.  Increased cycling efficiency and rate capability of copper-coated silicon anodes in lithium-ion batteries , 2011, 1108.0340.

[53]  G. Yushin,et al.  Ex-situ depth-sensing indentation measurements of electrochemically produced Si-Li alloy films , 2011 .

[54]  V Srinivasan,et al.  Real-time measurement of stress and damage evolution during initial lithiation of crystalline silicon. , 2011, Physical review letters.

[55]  Brandon R. Long,et al.  Strain Anisotropies and Self‐Limiting Capacities in Single‐Crystalline 3D Silicon Microstructures: Models for High Energy Density Lithium‐Ion Battery Anodes , 2011 .

[56]  Yang Liu,et al.  Anisotropic swelling and fracture of silicon nanowires during lithiation. , 2011, Nano letters.

[57]  D. Aurbach,et al.  A review of advanced and practical lithium battery materials , 2011 .

[58]  Yue Ma,et al.  Mitigating the initial capacity loss (ICL) problem in high-capacity lithium ion battery anode materials , 2011 .

[59]  Zhigang Suo,et al.  Lithium-assisted Plastic Deformation of Silicon Electrodes in Lithium-ion Batteries: a First-principles Theoretical Study , 2022 .

[60]  Yi Cui,et al.  Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. , 2011, Nano letters.

[61]  Yi Cui,et al.  Anomalous shape changes of silicon nanopillars by electrochemical lithiation. , 2011, Nano letters.

[62]  Mark W. Verbrugge,et al.  Diffusion Induced Stresses and Strain Energy in a Phase-Transforming Spherical Electrode Particle , 2011 .

[63]  Zhigang Suo,et al.  Large Plastic Deformation in High-Capacity Lithium-Ion Batteries Caused by Charge and Discharge , 2011 .

[64]  John P. Sullivan,et al.  Ultrafast electrochemical lithiation of individual Si nanowire anodes. , 2011, Nano letters.

[65]  Ting Zhu,et al.  Controlling the lithiation-induced strain and charging rate in nanowire electrodes by coating. , 2011, ACS nano.

[66]  Ji‐Guang Zhang,et al.  In situ transmission electron microscopy observation of microstructure and phase evolution in a SnO₂ nanowire during lithium intercalation. , 2011, Nano letters.

[67]  Allan F. Bower,et al.  A finite strain model of stress, diffusion, plastic flow, and electrochemical reactions in a lithium-ion half-cell , 2011 .

[68]  Yang-Tse Cheng,et al.  Crack Pattern Formation in Thin Film Lithium-Ion Battery Electrodes , 2011 .

[69]  Xingcheng Xiao,et al.  Thickness effects on the lithiation of amorphous silicon thin films , 2011 .

[70]  Huajian Gao,et al.  Improved cycling stability of silicon thin film electrodes through patterning for high energy density lithium batteries , 2011 .

[71]  Wei-Jun Zhang,et al.  Lithium insertion/extraction mechanism in alloy anodes for lithium-ion batteries , 2011 .

[72]  J. Tarascon,et al.  Pair distribution function analysis and solid state NMR studies of silicon electrodes for lithium ion batteries: understanding the (de)lithiation mechanisms. , 2011, Journal of the American Chemical Society.

[73]  John G. Ekerdt,et al.  Structure and Properties of Li―Si Alloys: A First-Principles Study , 2011 .

[74]  Yifan Gao,et al.  Strong stress-enhanced diffusion in amorphous lithium alloy nanowire electrodes , 2011 .

[75]  Zhigang Suo,et al.  Inelastic hosts as electrodes for high-capacity lithium-ion batteries , 2011 .

[76]  Wei-Jun Zhang A review of the electrochemical performance of alloy anodes for lithium-ion batteries , 2011 .

[77]  Huajian Gao,et al.  Continuum and atomistic models of strongly coupled diffusion, stress, and solute concentration , 2011 .

[78]  Song Jin,et al.  Nanostructured silicon for high capacity lithium battery anodes , 2011 .

[79]  John P. Sullivan,et al.  In Situ Observation of the Electrochemical Lithiation of a Single SnO2 Nanowire Electrode , 2010, Science.

[80]  Claus Daniel,et al.  Understanding the Degradation of Silicon Electrodes for Lithium-Ion Batteries Using Acoustic Emission , 2010 .

[81]  Seung M. Oh,et al.  Performance of electrochemically generated Li21Si5 phase for lithium-ion batteries , 2010 .

[82]  Pradeep R. Guduru,et al.  In situ measurement of biaxial modulus of Si anode for Li-ion batteries , 2010 .

[83]  A. Bower,et al.  In Situ Measurements of Stress-Potential Coupling in Lithiated Silicon , 2010, 1108.0372.

[84]  Zhigang Suo,et al.  Fracture of electrodes in lithium-ion batteries caused by fast charging , 2010 .

[85]  W. Craig Carter,et al.  “Electrochemical Shock” of Intercalation Electrodes: A Fracture Mechanics Analysis , 2010 .

[86]  Sergei V. Kalinin,et al.  Nanoscale mapping of ion diffusion in a lithium-ion battery cathode. , 2010, Nature nanotechnology.

[87]  M. Verbrugge,et al.  Application of Hasselman’s Crack Propagation Model to Insertion Electrodes , 2010 .

[88]  Venkat Srinivasan,et al.  In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation , 2010, 1108.0647.

[89]  M. Verbrugge,et al.  Modeling diffusion-induced stress in nanowire electrode structures , 2010 .

[90]  Stephen Jesse,et al.  Real space mapping of Li-ion transport in amorphous Si anodes with nanometer resolution. , 2010, Nano letters.

[91]  Kurt Maute,et al.  Stress generation in silicon particles during lithium insertion , 2010 .

[92]  Yue Qi,et al.  Elastic softening of amorphous and crystalline Li–Si Phases with increasing Li concentration: A first-principles study , 2010 .

[93]  G. Yushin,et al.  Deformations in Si-Li anodes upon electrochemical alloying in nano-confined space. , 2010, Journal of the American Chemical Society.

[94]  Z. Suo,et al.  Averting cracks caused by insertion reaction in lithium–ion batteries , 2010 .

[95]  Lin Gu,et al.  Reversible Storage of Lithium in Silver‐Coated Three‐Dimensional Macroporous Silicon , 2010, Advanced materials.

[96]  Tanmay K. Bhandakkar,et al.  Cohesive modeling of crack nucleation under diffusion induced stresses in a thin strip: Implications on the critical size for flaw tolerant battery electrodes , 2010 .

[97]  Vincent Chevrier,et al.  First principles study of Li–Si crystalline phases: Charge transfer, electronic structure, and lattice vibrations , 2010 .

[98]  J. Rogers,et al.  Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. , 2010, Nano letters.

[99]  M. Verbrugge,et al.  Diffusion-Induced Stress, Interfacial Charge Transfer, and Criteria for Avoiding Crack Initiation of Electrode Particles , 2010 .

[100]  Vincent Chevrier,et al.  First Principles Studies of Disordered Lithiated Silicon , 2010 .

[101]  G. Yushin,et al.  High-performance lithium-ion anodes using a hierarchical bottom-up approach. , 2010, Nature materials.

[102]  Candace K. Chan,et al.  Stepwise nanopore evolution in one-dimensional nanostructures. , 2010, Nano letters.

[103]  Jaephil Cho,et al.  A critical size of silicon nano-anodes for lithium rechargeable batteries. , 2010, Angewandte Chemie.

[104]  Huajian Gao,et al.  A surface locking instability for atomic intercalation into a solid electrode , 2010 .

[105]  Nae-Lih Wu,et al.  A study on the interior microstructures of working Sn particle electrode of Li-ion batteries by in situ X-ray transmission microscopy , 2010 .

[106]  Mark W. Verbrugge,et al.  Stress and Strain-Energy Distributions within Diffusion-Controlled Insertion-Electrode Particles Subjected to Periodic Potential Excitations , 2009 .

[107]  Min Gyu Kim,et al.  Silicon nanotube battery anodes. , 2009, Nano letters.

[108]  Yi Cui,et al.  Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries. , 2009, Nano letters.

[109]  J. Dahn,et al.  First principles studies of silicon as a negative electrode material for lithium-ion batteries , 2009 .

[110]  Yi Cui,et al.  Impedance Analysis of Silicon Nanowire Lithium Ion Battery Anodes , 2009 .

[111]  Vincent Chevrier,et al.  First Principles Model of Amorphous Silicon Lithiation , 2009 .

[112]  Mark W. Verbrugge,et al.  Evolution of stress within a spherical insertion electrode particle under potentiostatic and galvanostatic operation , 2009 .

[113]  Yi Cui,et al.  Surface Chemistry and Morphology of the Solid Electrolyte Interphase on Silicon Nanowire Lithium-ion Battery Anodes , 2009 .

[114]  Jing Li,et al.  In Situ 119Sn Mössbauer Effect Study of the Reaction of Lithium with Si Using a Sn Probe , 2009 .

[115]  Rangeet Bhattacharyya,et al.  Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries. , 2009, Journal of the American Chemical Society.

[116]  M. Verbrugge,et al.  The influence of surface mechanics on diffusion induced stresses within spherical nanoparticles , 2008 .

[117]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[118]  Kristina Edström,et al.  Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries , 2007 .

[119]  Jing Li,et al.  An In Situ X-Ray Diffraction Study of the Reaction of Li with Crystalline Si , 2007 .

[120]  Mark N. Obrovac,et al.  Reversible Cycling of Crystalline Silicon Powder , 2007 .

[121]  Chunsheng Wang,et al.  Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells , 2007 .

[122]  Prashant N. Kumta,et al.  Interfacial Properties of the a-Si ∕ Cu :Active–Inactive Thin-Film Anode System for Lithium-Ion Batteries , 2006 .

[123]  John Newman,et al.  Stress generation and fracture in lithium insertion materials , 2005 .

[124]  Yung-Eun Sung,et al.  Failure Modes of Silicon Powder Negative Electrode in Lithium Secondary Batteries , 2004 .

[125]  T. D. Hatchard,et al.  In Situ XRD and Electrochemical Study of the Reaction of Lithium with Amorphous Silicon , 2004 .

[126]  Mark N. Obrovac,et al.  Structural changes in silicon anodes during lithium insertion/extraction , 2004 .

[127]  T. Takamura,et al.  A vacuum deposited Si film having a Li extraction capacity over 2000 mAh/g with a long cycle life , 2004 .

[128]  T. D. Hatchard,et al.  Reaction of Li with Alloy Thin Films Studied by In Situ AFM , 2003 .

[129]  J. Dahn,et al.  The Electrochemical Reaction of Lithium with Tin Studied By In Situ AFM , 2003 .

[130]  Young-Il Jang,et al.  Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage , 2003 .

[131]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[132]  Kevin W. Eberman,et al.  Colossal Reversible Volume Changes in Lithium Alloys , 2001 .

[133]  H. Lee,et al.  Stress effect on cycle properties of the silicon thin-film anode , 2001 .

[134]  Liquan Chen,et al.  The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature , 2000 .

[135]  William D. Nix,et al.  Decrepitation model for capacity loss during cycling of alloys in rechargeable electrochemical systems , 2000 .

[136]  H. Okamoto The Li-Si (Lithium-Silicon) system , 1990 .

[137]  C. V. D. Marel,et al.  The phase diagram of the system lithium-silicon , 1985 .

[138]  R. Huggins,et al.  Chemical diffusion in intermediate phases in the lithium-silicon system. [415/sup 0/C] , 1981 .

[139]  K. Bean,et al.  Anisotropic etching of silicon , 1978, IEEE Transactions on Electron Devices.

[140]  S. Lai Solid Lithium‐Silicon Electrode , 1976 .

[141]  J. Cahn,et al.  A linear theory of thermochemical equilibrium of solids under stress , 1973 .

[142]  R. Castellano,et al.  Chemical Polish and Etch for Lithium, Sodium and Potassium , 1971 .

[143]  J. Nye Physical Properties of Crystals: Their Representation by Tensors and Matrices , 1957 .