Reconnectable fiberscopes for chronic in vivo deep‐brain imaging

Reconnectable bundles consisting of thousands of optical fibers are shown to enable high‐quality image transmission, offering a platform for the creation of implantable fiberscopes for minimally invasive in vivo brain imaging. Experiments on various lines of transgenic mice verify the performance of this fiberscope as a powerful tool for chronic in vivo neuroimaging using genetically encoded calcium indicators, neuronal activity markers as well as axon growth regulators and brain‐specific protein drivers in deep regions of live brain.

[1]  M. Greaves,et al.  Human Thy-1: Expression on the cell surface of neuronal and and glial cells , 1982, Brain Research.

[2]  R. Faull,et al.  The use of c-fos as a metabolic marker in neuronal pathway tracing , 1989, Journal of Neuroscience Methods.

[3]  J. Hardy,et al.  Adaptive Optics for Astronomical Telescopes , 1998 .

[4]  Jeff Hecht,et al.  City of Light: The Story of Fiber Optics , 1999 .

[5]  M. Ohkura,et al.  A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein , 2001, Nature Biotechnology.

[6]  K. Deisseroth,et al.  Millisecond-timescale, genetically targeted optical control of neural activity , 2005, Nature Neuroscience.

[7]  E. Cocker,et al.  Fiber-optic fluorescence imaging , 2005, Nature Methods.

[8]  J. Changeux,et al.  Live imaging of neural structure and function by fibred fluorescence microscopy , 2006, EMBO reports.

[9]  B. Bouma,et al.  Three-dimensional miniature endoscopy , 2006, Nature.

[10]  Feng Zhang,et al.  An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology , 2007, Journal of neural engineering.

[11]  K. Deisseroth,et al.  Neural substrates of awakening probed with optogenetic control of hypocretin neurons , 2007, Nature.

[12]  J. Bossert,et al.  Targeted disruption of cocaine-activated accumbens neurons prevents context-specific sensitization , 2009, Nature Neuroscience.

[13]  Sreekanth H. Chalasani,et al.  Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators , 2009, Nature Methods.

[14]  G. Miesenböck,et al.  The Optogenetic Catechism , 2009, Science.

[15]  Yongxin Zhao,et al.  An Expanded Palette of Genetically Encoded Ca2+ Indicators , 2011, Science.

[16]  Matthew T. Kaufman,et al.  An optogenetic toolbox designed for primates , 2011, Nature Neuroscience.

[17]  Alice M Stamatakis,et al.  Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking. , 2011, Nature.

[18]  Multicolor in vivo brain imaging with a microscope-coupled fiber-bundle microprobe , 2012 .

[19]  Garret D Stuber,et al.  Construction of implantable optical fibers for long-term optogenetic manipulation of neural circuits , 2011, Nature Protocols.

[20]  S. Nakanishi,et al.  Spatio‐temporal control of neural activity in vivo using fluorescence microendoscopy , 2012, The European journal of neuroscience.

[21]  Fiber-optic Raman sensing of cell proliferation probes and molecular vibrations: Brain-imaging perspective , 2012 .

[22]  K. V. Anokhin,et al.  Implantable fiber-optic interface for parallel multisite long-term optical dynamic brain interrogation in freely moving mice , 2013, Scientific Reports.

[23]  G. Pelled,et al.  Molecular Neuroimaging of Post-Injury Plasticity , 2014, Journal of Molecular Neuroscience.

[24]  Jonathan Bradley,et al.  Spatially Selective Holographic Photoactivation and Functional Fluorescence Imaging in Freely Behaving Mice with a Fiberscope , 2014, Neuron.

[25]  A. Zheltikov,et al.  Fiber-optic control and thermometry of single-cell thermosensation logic , 2015, Scientific Reports.

[26]  Changhuei Yang,et al.  Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue , 2015, Nature Photonics.

[27]  A. A. Lanin,et al.  Fiber-optic electron-spin-resonance thermometry of single laser-activated neurons. , 2016, Optics letters.

[28]  A. A. Lanin,et al.  Thermogenetic neurostimulation with single-cell resolution , 2017, Nature Communications.

[29]  A. Fedotov,et al.  Quantitative cognitive‐test characterization of reconnectable implantable fiber‐optic neurointerfaces for optogenetic neurostimulation , 2017, Journal of biophotonics.