In quest of strong Be-Ng bonds among the neutral Ng-Be complexes.

The global minimum geometries of BeCN2 and BeNBO are linear BeN-CN and BeN-BO, respectively. The Be center of BeCN2 binds He with the highest Be-He dissociation energy among the studied neutral He-Be complexes. In addition, BeCN2 can be further tuned as a better noble gas trapper by attaching it with any electron-withdrawing group. Taking BeO, BeS, BeNH, BeNBO, and BeCN2 systems, the study at the CCSD(T)/def2-TZVP level of theory also shows that both BeCN2 and BeNBO systems have higher noble gas binding ability than those related reported systems. ΔG values for the formation of NgBeCN2/NgBeNBO (Ng = Ar-Rn) are negative at room temperature (298 K), whereas the same becomes negative at low temperature for Ng = He and Ne. The polarization plus the charge transfer is the dominating term in the interaction energy.

[1]  Pratim K. Chattaraj,et al.  Attractive Xe-Li interaction in Li-decorated clusters , 2013 .

[2]  Paola Antoniotti,et al.  Stable Compounds of the Lightest Noble Gases: A Computational Investigation of RNBeNg (Ng = He, Ne, Ar) , 2003 .

[3]  Wojciech Grochala,et al.  A metastable He-O bond inside a ferroelectric molecular cavity: (HeO)(LiF)2. , 2012, Physical chemistry chemical physics : PCCP.

[4]  L. Stein Removal of Xenon and Radon from Contaminated Atmospheres with Dioxygenyl Hexafluoroantimonate, O2SbF6 , 1973, Nature.

[5]  M. Hochlaf,et al.  Solvation effects and stabilization of multicharged ions: a case study of Ar(m)BeO(q+) complexes. , 2012, Physical chemistry chemical physics : PCCP.

[6]  Mika Pettersson,et al.  The mechanism of formation and infrared-induced decomposition of HXeI in solid Xe , 1997 .

[7]  H. Stoll,et al.  Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16–18 elements , 2003 .

[8]  李志平,et al.  Structural transition, dielectric and bonding properties of BeCN 2 , 2011 .

[9]  D. Manolopoulos,et al.  Theoretical studies of the fullerenes: C34 to C70 , 1991 .

[10]  Vladimir I Feldman,et al.  Experimental evidence for the formation of HXeCCH: the first hydrocarbon with an inserted rare-gas atom. , 2003, Journal of the American Chemical Society.

[11]  Neil Bartlett,et al.  Concerning the nature of XePtF6 , 2000 .

[12]  Wojciech Grochala,et al.  On Chemical Bonding Between Helium and Oxygen , 2009 .

[13]  T. Ghanty,et al.  Structure and stability of xenon insertion compounds of hypohalous acids, HXeOX [X=F, Cl, and Br]: an ab initio investigation. , 2006, The Journal of chemical physics.

[14]  H. Rzepa The rational design of helium bonds , 2010, Nature Chemistry.

[15]  Jan Lundell,et al.  Neutral rare‐gas containing charge‐transfer molecules in solid matrices. II. HXeH, HXeD, and DXeD in Xe , 1995 .

[16]  R. Benny Gerber,et al.  Quantum Chemical Calculations on Novel Molecules from Xenon Insertion into Hydrocarbons , 2002 .

[17]  Jun Li,et al.  Significant interactions between uranium and noble-gas atoms: coordination of the UO2+ cation by Ne, Ar, Kr, and Xe atoms. , 2004, Angewandte Chemie.

[18]  Lalita S. Uribe,et al.  Hydrogen isotope effects on covalent and noncovalent interactions: The case of protonated rare gas clusters , 2013 .

[19]  P. Pyykkö Ab initio study of bonding trends among the sulphur-containing 16-valence-electron ABC species: SBO−, SBS−, SNO+ and SXNen , 1989 .

[20]  T. Korona,et al.  Theoretical studies of potential energy surface and bound states of the strongly bound He(1S)-BeO (1Σ+) complex. , 2013, The journal of physical chemistry. A.

[21]  Jan Lundell,et al.  A neutral xenon-containing radical, HXeO. , 2003, Journal of the American Chemical Society.

[22]  W. Grochala Atypical Compounds of Gases, which Have Been Called “Noble” , 2007 .

[23]  Mika Pettersson,et al.  A Chemical Compound Formed from Water and Xenon: HXeOH , 1999 .

[24]  G. Pimentel,et al.  Infrared detection of xenon dichloride , 1967 .

[25]  D. Cremer,et al.  Helium chemistry: theoretical predictions and experimental challenge , 1987 .

[26]  K. Christe A Renaissance in Noble Gas Chemistry. , 2001, Angewandte Chemie.

[27]  Pratim K Chattaraj,et al.  C5Li7(+) and O2Li5(+) as noble-gas-trapping agents. , 2013, Chemistry.

[28]  S. Riedel,et al.  Matrix infrared spectroscopy and quantum-chemical calculations for the coinage-metal fluorides: comparisons of Ar-AuF, Ne-AuF, and Molecules MF2 and MF3. , 2013, Chemistry.

[29]  R. Bader Atoms in molecules : a quantum theory , 1990 .

[30]  Stefano Borocci,et al.  From OBeHe to H3BOBeHe: Enhancing the stability of a neutral helium compound , 2005 .

[31]  Jan Lundell,et al.  Chemical compounds formed from diacetylene and rare-gas atoms: HKrC4H and HXeC4H. , 2003, Journal of the American Chemical Society.

[32]  M. Räsänen,et al.  HXeOBr in a xenon matrix. , 2011, The Journal of chemical physics.

[33]  Venkatesan Subramanian,et al.  Structure and stability of (NG)nCN3Be3(+) clusters and comparison with (NG)BeY(0/+). , 2013, Chemphyschem : a European journal of chemical physics and physical chemistry.

[34]  L. Operti,et al.  (HNg+)(OH2) complexes (Ng = He–Xe): An ab initio and DFT theoretical investigation , 2013 .

[35]  K. O. Christe Die Renaissance der Edelgaschemie , 2001 .

[36]  Alberto Vela,et al.  The implications of symmetry of the external potential on bond paths. , 2008, Chemistry.

[37]  J. J. Turner,et al.  Krypton Fluoride: Preparation by the Matrix Isolation Technique , 1963, Science.

[38]  Jun Yu Li,et al.  On the noble-gas-induced intersystem crossing for the CUO molecule: experimental and theoretical investigations of CUO(Ng)n (Ng = Ar, Kr, Xe; n = 1, 2, 3, 4) complexes in solid neon. , 2004, Inorganic chemistry.

[39]  M. Ziółkowski,et al.  Cooperativity in hydrogen-bonded interactions: ab initio and "atoms in molecules" analyses. , 2006, The journal of physical chemistry. A.

[40]  Markku Räsänen,et al.  Noble-gas hydrides: new chemistry at low temperatures. , 2009, Accounts of chemical research.

[41]  Tian Lu Multiwfn: a multifunctional wavefunction analyzer , 2012 .

[42]  Jan Lundell,et al.  Fluorine-free organoxenon chemistry: HXeCCH, HXeCC, and HXeCCXeH. , 2003, Journal of the American Chemical Society.

[43]  E. G. Hope,et al.  Recent Advances in Noble-Gas Chemistry , 1999 .

[44]  Wolfram Koch,et al.  Stabilities and nature of the attractive interactions in HeBeO, NeBeO, and ArBeO and a comparison with analogs NGLiF, NGBN, and NGLiH (NG = He, Ar). A theoretical investigation , 1988 .

[45]  Qiang Wang,et al.  Infrared spectra of NgBeS (Ng = Ne, Ar, Kr, Xe) and BeS2 in noble-gas matrices. , 2013, The journal of physical chemistry. A.

[46]  M. Pettersson,et al.  Neutral rare-gas containing charge-transfer molecules in solid matrices. I. HXeCl, HXeBr, HXeI, and HKrCl in Kr and Xe , 1995 .

[47]  Ping Guo,et al.  Ab initio study of ultra-incompressible ternary BeCN2 polymorph , 2011 .

[48]  F. Grandinetti Neon behind the signs. , 2013, Nature chemistry.

[49]  Takuji Nishimura,et al.  Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.

[50]  Lester Andrews,et al.  Noble Gas Complexes with BeO: Infrared Spectra of NG-BeO (NG = Ar, Kr, Xe) , 1994 .

[51]  P. Taylor,et al.  A diagnostic for determining the quality of single‐reference electron correlation methods , 2009 .

[52]  Elfi Kraka,et al.  Chemical Bonds without Bonding Electron Density — Does the Difference Electron‐Density Analysis Suffice for a Description of the Chemical Bond? , 1984 .

[53]  P. Chattaraj,et al.  On the validity of the maximum hardness principle and the minimum electrophilicity principle during chemical reactions. , 2013, The journal of physical chemistry. A.

[54]  M. Gordon Structure and stability of SiH+4☆ , 1978 .

[55]  J. E. Boggs,et al.  On the covalent character of rare gas bonding interactions: a new kind of weak interaction. , 2013, The journal of physical chemistry. A.

[56]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[57]  M. Pettersson,et al.  A Stable Argon Compound. , 2000 .

[58]  Gernot Frenking,et al.  Structures and bond energies of the noble gas complexes NgBeO (NgAr, Kr, Xe) , 1994 .

[59]  Jan Lundell,et al.  A gate to organokrypton chemistry: HKrCCH. , 2003, Journal of the American Chemical Society.

[60]  T. Ghanty,et al.  Significant increase in the stability of rare gas hydrides on insertion of beryllium atom. , 2007, The Journal of chemical physics.

[61]  Jan Lundell,et al.  HXeSH, the First Example of a Xenon-Sulfur Bond , 1998 .

[62]  Hui Li,et al.  Energy decomposition analysis of covalent bonds and intermolecular interactions. , 2009, The Journal of chemical physics.

[63]  D. Cremer,et al.  The chemistry of the noble gas elements helium, neon, and argon — Experimental facts and theoretical predictions , 1990 .

[64]  Vladimir I. Feldman,et al.  Formation and decay of transient xenon dihydride resulting from hydrocarbon radiolysis in a xenon matrix , 1996 .

[65]  Vladimir I. Feldman,et al.  Further evidence for formation of xenon dihydride from neutral hydrogen atoms: a comparison of ESR and IR spectroscopic results , 1997 .

[66]  M. Pettersson,et al.  HXeSH, the First Example of a Xenon—Sulfur Bond. , 1998 .

[67]  Stefano Borocci,et al.  Neutral helium compounds: theoretical evidence for a large class of polynuclear complexes. , 2006, Chemistry.

[68]  J. Aihara,et al.  Reduced HOMO−LUMO Gap as an Index of Kinetic Stability for Polycyclic Aromatic Hydrocarbons , 1999 .

[69]  R. Bader,et al.  Bond paths are not chemical bonds. , 2009, The journal of physical chemistry. A.

[70]  Kenneth B. Wiberg,et al.  Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane , 1968 .

[71]  S. Borocci,et al.  SBeNg, SBNg+, and SCNg2+ complexes (Ng=He, Ne, Ar): a computational investigation on the structure and stability , 2004 .

[72]  Jun Li,et al.  Noble Gas-Actinide Compounds: Complexation of the CUO Molecule by Ar, Kr, and Xe Atoms in Noble Gas Matrices , 2002, Science.

[73]  T. Ghanty,et al.  Prediction of metastable metal-rare gas fluorides: FMRgF (M=Be and Mg; Rg=Ar, Kr and Xe). , 2008, The Journal of chemical physics.