Ascorbyl Free Radical and Dehydroascorbate Formation in Rat Liver Endoplasmic Reticulum

[1]  G. Hofhaus,et al.  Yeast Erv2p Is the First Microsomal FAD-linked Sulfhydryl Oxidase of the Erv1p/Alrp Protein Family* , 2001, The Journal of Biological Chemistry.

[2]  J. Mandl,et al.  Role of vitamin E in ascorbate-dependent protein thiol oxidation in rat liver endoplasmic reticulum. , 2001, Archives of biochemistry and biophysics.

[3]  P. Csermely,et al.  Protein-disulfide Isomerase- and Protein Thiol-dependent Dehydroascorbate Reduction and Ascorbate Accumulation in the Lumen of the Endoplasmic Reticulum* , 2001, The Journal of Biological Chemistry.

[4]  C. E. Cobb,et al.  Mitochondrial uptake and recycling of ascorbic acid. , 2001, Archives of biochemistry and biophysics.

[5]  D. Lichtenberg,et al.  The dose-dependent effect of copper-chelating agents on the kinetics of peroxidation of low-density lipoprotein (LDL) , 2001, Free radical research.

[6]  J. Weissman,et al.  Biochemical basis of oxidative protein folding in the endoplasmic reticulum. , 2000, Science.

[7]  H. Göktürk,et al.  Effect of neocuproine, a selective Cu(I) chelator, on nitrergic relaxations in the mouse corpus cavernosum. , 2000, European journal of pharmacology.

[8]  J. Mandl,et al.  Ascorbate oxidation is a prerequisite for its transport into rat liver microsomal vesicles. , 2000, The Biochemical journal.

[9]  C. Kaiser,et al.  Pathways for protein disulphide bond formation. , 2000, Trends in cell biology.

[10]  N. Smirnoff,et al.  Ascorbic Acid in Plants: Biosynthesis and Function , 2000 .

[11]  J. Mandl,et al.  Ascorbate‐mediated electron transfer in protein thiol oxidation in the endoplasmic reticulum , 1999, FEBS letters.

[12]  J. Mandl,et al.  Preferential Transport of Glutathione versusGlutathione Disulfide in Rat Liver Microsomal Vesicles* , 1999, The Journal of Biological Chemistry.

[13]  J. Mandl,et al.  Gulonolactone oxidase activity‐dependent intravesicular glutathione oxidation in rat liver microsomes , 1998, FEBS letters.

[14]  J. Mandl,et al.  Dehydroascorbate and Ascorbate Transport in Rat Liver Microsomal Vesicles* , 1998, The Journal of Biological Chemistry.

[15]  S. Bisland,et al.  Neocuproine, a selective Cu(I) chelator, and the relaxation of rat vascular smooth muscle by S‐nitrosothiols , 1997, British journal of pharmacology.

[16]  J. Mandl,et al.  Ascorbate metabolism and its regulation in animals. , 1997, Free radical biology & medicine.

[17]  J. Mandl,et al.  Evidence for the intraluminal positioning of p-nitrophenol UDP-glucuronosyltransferase activity in rat liver microsomal vesicles. , 1994, Archives of biochemistry and biophysics.

[18]  M. Nakamura,et al.  Formation and reduction of ascorbate radicals by hog thyroid microsomes. , 1993, Archives of biochemistry and biophysics.

[19]  A J Sinskey,et al.  Oxidized redox state of glutathione in the endoplasmic reticulum. , 1992, Science.

[20]  B. Burchell,et al.  A new microtechnique for the analysis of the human hepatic microsomal glucose-6-phosphatase system. , 1988, Clinica chimica acta; international journal of clinical chemistry.

[21]  A. Benedetti,et al.  MgATP-dependent glucose 6-phosphate-stimulated Ca2+ accumulation in liver microsomal fractions. Effects of inositol 1,4,5-trisphosphate and GTP. , 1988, The Journal of biological chemistry.

[22]  R. Løvstad Interaction of neocuproine, 1,10-phenanthroline and 2,2'-dipyridyl with human ceruloplasmin. , 1988, The International journal of biochemistry.

[23]  F. L. Crane,et al.  Monodehydroascorbate as an electron acceptor for NADH reduction by coated vesicle and Golgi apparatus fractions of rat liver. , 1984, Biochimica et biophysica acta.