Enantioselective fluorescent recognition of chiral acids by 3- and 3,3′-aminomethyl substituted BINOLs

[1]  Lin Pu,et al.  Fluorescence of organic molecules in chiral recognition. , 2004, Chemical reviews.

[2]  L. Pu,et al.  Highly enantioselective fluorescent recognition of α-amino acid derivatives , 2004 .

[3]  A. Yudin,et al.  Modified BINOL ligands in asymmetric catalysis. , 2003, Chemical reviews.

[4]  S. Vyskocil,et al.  Non-symmetrically substituted 1,1'-binaphthyls in enantioselective catalysis. , 2003, Chemical reviews.

[5]  L. Pu,et al.  Fluorescent sensors for the enantioselective recognition of mandelic acid: signal amplification by dendritic branching. , 2002, Journal of the American Chemical Society.

[6]  L. Pu,et al.  Bisbinaphthyl macrocycle-based highly enantioselective fluorescent sensors for alpha-hydroxycarboxylic acids. , 2002, Organic letters.

[7]  Lin Pu,et al.  A practical enantioselective fluorescent sensor for mandelic acid. , 2002, Journal of the American Chemical Society.

[8]  M. Kozlowski,et al.  BINOL-salen metal catalysts incorporating a bifunctional design. , 2001, Organic letters.

[9]  Lin Pu,et al.  1,1'-Binaphthyl Dimers, Oligomers, and Polymers: Molecular Recognition, Asymmetric Catalysis, and New Materials. , 1998, Chemical reviews.

[10]  S. Shinkai,et al.  Chiral discrimination of monosaccharides using a fluorescent molecular sensor , 1995, Nature.

[11]  H. Brunner,et al.  Asymmetrische Katalysen, IL: Optisch aktive Binaphthylderivate — Synthese und Einsatz in Übergangsmetallkatalysatoren , 1989 .

[12]  M. Newcomb,et al.  Macrocycles Containing Tin. The Preparation of Macrobicyclic Lewis Acidic Hosts Containing Two Tin Atoms and 119-Sn NMR Studies of Their Chloride and Bromide Binding Properties in Solution , 1989 .

[13]  K. A. Connors,et al.  Binding Constants: The Measurement of Molecular Complex Stability , 1987 .