Flory-Huggins model of equilibrium polymerization and phase separation in the Stockmayer fluid.

The competition between chain formation and phase separation in the Stockmayer fluid (SF) of dipolar particles is analyzed using a renormalized Flory-Huggins model of equilibrium polymerization. Calculated critical properties (T(c), phi(c), Z(c)) for the SF compare favorably with simulations over a wide range of the dimensionless dipolar (or "sticking") energy mu*. We find that the polymerization transition preempts phase separation for a large mu*, i.e., (mu*)2 >22.