High contrast and high angular imaging at Subaru Telescope
暂无分享,去创建一个
O. Guyon | T. Kudo | T. Currie | Y. Minowa | N. Skaf | M. Akiyama | S. Vievard | V. Deo | Y. Ono | K. Ahn | M. Tamura | Takshi Hattori | Julen Lozi
[1] D. Mawet,et al. Exoplanet detection with photonic lanterns for focal-plane wavefront sensing and control , 2022, Astronomical Telescopes + Instrumentation.
[2] D. Mawet,et al. Demonstration of a photonic-lantern focal-plane wavefront sensor using fiber mode conversion and deep learning , 2022, Astronomical Telescopes + Instrumentation.
[3] O. Guyon,et al. Laboratory demonstrations of EFC and spatial LDFC on Subaru/SCExAO , 2022, Astronomical Telescopes + Instrumentation.
[4] O. Guyon,et al. AO3000 at Subaru: combining for the first time a NIR WFS using First Light’s C-RED ONE and ALPAO’s 64x64 DM , 2022, Astronomical Telescopes + Instrumentation.
[5] O. Guyon,et al. FIRST 5T 3D: a laser written device for FIRST/SUBARU reducing crosstalk and propagation losses , 2022, Astronomical Telescopes + Instrumentation.
[6] O. Guyon,et al. Hybrid electro-optic visible multi-telescope beam combiner for next generation FIRST/SUBARU instruments , 2022, Astronomical Telescopes + Instrumentation.
[7] D. Mawet,et al. Experimental measurements of AO-fed photonic lantern coupling efficiencies , 2022, Astronomical Telescopes + Instrumentation.
[8] G. Perrin,et al. Photonic chip for visible interferometry: laboratory characterization and comparison with the theoretical model , 2022, Astronomical Telescopes + Instrumentation.
[9] D. Mawet,et al. Spectroastrometry with photonic lanterns , 2022, Astronomical Telescopes + Instrumentation.
[10] Jessica R. Zheng,et al. Optical design for Subaru Nasmyth Beam Switcher , 2022, Astronomical Telescopes + Instrumentation.
[11] O. Guyon,et al. Differential speckle polarimetry with SCExAO VAMPIRES , 2022, Astronomical Telescopes + Instrumentation.
[12] O. Guyon,et al. Optimal self-calibration and fringe tracking in photonic nulling interferometers using machine learning , 2022, Astronomical Telescopes + Instrumentation.
[13] O. Guyon,et al. High contrast imaging at the photon noise limit with WFS-based PSF calibration , 2022, Astronomical Telescopes + Instrumentation.
[14] O. Guyon,et al. A visible-light Lyot coronagraph for SCExAO/VAMPIRES , 2022, Astronomical Telescopes + Instrumentation.
[15] Timothy D. Brandt,et al. Direct-imaging Discovery and Dynamical Mass of a Substellar Companion Orbiting an Accelerating Hyades Sun-like Star with SCExAO/CHARIS , 2022, The Astrophysical Journal Letters.
[16] Timothy D. Brandt,et al. Images of embedded Jovian planet formation at a wide separation around AB Aurigae , 2022, Nature Astronomy.
[17] J. Wisniewski,et al. Multiband Imaging of the HD 36546 Debris Disk: A Refined View from SCExAO/CHARIS , 2021, The Astronomical Journal.
[18] S. Gross,et al. Very high resolution spectro-interferometry with wavefront sensing capabilities on Subaru/SCExAO using photonics , 2021, Optical Engineering + Applications.
[19] Nick Cvetojevic,et al. Scalable photonic-based nulling interferometry with the dispersed multi-baseline GLINT instrument , 2021, Nature Communications.
[20] Timothy D. Brandt,et al. SCExAO/MEC and CHARIS Discovery of a Low-mass, 6 au Separation Companion to HIP 109427 Using Stochastic Speckle Discrimination and High-contrast Spectroscopy , 2021, The Astronomical Journal.
[21] N. Jovanovic,et al. Extremely high-contrast, high spectral resolution spectrometer REACH for the Subaru Telescope , 2020, Astronomical Telescopes + Instrumentation.
[22] Julien Lozi,et al. New NIR spectro-polarimetric modes for the SCExAO instrument , 2020, Astronomical Telescopes + Instrumentation.
[23] Francois Rigaut,et al. ULTIMATE-Subaru: system performance modeling of GLAO and wide-field NIR instruments , 2020, Astronomical Telescopes + Instrumentation.
[24] Julien Lozi,et al. Overview of AO activities at Subaru Telescope , 2020, Astronomical Telescopes + Instrumentation.
[25] Romain Laugier,et al. Status of the SCExAO instrument: recent technology upgrades and path to a system-level demonstrator for PSI , 2020, Astronomical Telescopes + Instrumentation.
[26] Nick Cvetojevic,et al. FIRST, a pupil-remapping fiber interferometer at the Subaru Telescope: on-sky results , 2020, Astronomical Telescopes + Instrumentation.
[27] Yosuke Minowa,et al. ULTIMATE-START: Subaru tomography adaptive optics research experiment project overview , 2020, Astronomical Telescopes + Instrumentation.
[28] Timothy D. Brandt,et al. SCExAO/CHARIS Direct Imaging Discovery of a 20 au Separation, Low-mass Ratio Brown Dwarf Companion to an Accelerating Sun-like Star , 2020, The Astrophysical Journal Letters.
[29] O. Guyon,et al. The MKID Exoplanet Camera for Subaru SCExAO , 2020, Publications of the Astronomical Society of the Pacific.
[30] Julien Lozi,et al. High-contrast Hα imaging with Subaru/SCExAO + VAMPIRES , 2020, Journal of Astronomical Telescopes, Instruments, and Systems.
[31] Timothy D. Brandt,et al. SCExAO/CHARIS Near-infrared Integral Field Spectroscopy of the HD 15115 Debris Disk , 2020, The Astronomical Journal.
[32] Yosuke Minowa,et al. ULTIMATE-Subaru: enhancing the Subaru's wide-field capability with GLAO , 2020, Micro + Nano Materials, Devices, and Applications.
[33] Nick Cvetojevic,et al. Diffraction-limited polarimetric imaging of protoplanetary disks and mass-loss shells with VAMPIRES , 2020, Micro + Nano Materials, Devices, and Applications.
[34] O. Guyon,et al. First on-sky demonstration of an integrated-photonic nulling interferometer: the GLINT instrument , 2019, Monthly Notices of the Royal Astronomical Society.
[35] Olivier Guyon,et al. The CHARIS IFS for high contrast imaging at Subaru , 2015, SPIE Optical Engineering + Applications.
[36] G. Perrin,et al. The Subaru Coronagraphic Extreme Adaptive Optics System: Enabling High-Contrast Imaging on Solar-System Scales , 2015, 1507.00017.
[37] O. Guyon,et al. The VAMPIRES instrument: imaging the innermost regions of protoplanetary discs with polarimetric interferometry , 2014, 1405.7426.
[38] Olivier Guyon,et al. Commissioning status of Subaru laser guide star adaptive optics system , 2010, Astronomical Telescopes + Instrumentation.
[39] Olivier Guyon,et al. Current status of the laser guide star adaptive optics system for Subaru Telescope , 2008, Astronomical Telescopes + Instrumentation.
[40] Hiroshi Terada,et al. Performance update of the infrared camera and spectrograph for the Subaru Telescope (IRCS) , 2004, SPIE Astronomical Telescopes + Instrumentation.
[41] Yosuke Minowa,et al. Performance of Subaru Cassegrain Adaptive Optics System , 2004 .
[42] Alan T. Tokunaga,et al. Infrared camera and spectrograph for the Subaru Telescope , 1994, Astronomical Telescopes and Instrumentation.
[43] Olivier Guyon,et al. High Sensitivity Wavefront Sensing with a Nonlinear Curvature Wavefront Sensor , 2009 .
[44] Atsushi Shimono,et al. The Kyoto Tridimensional Spectrograph II on Subaru and the University of Hawaii 88 in Telescopes , 2009 .
[45] Hiroshi Terada,et al. IRCS: infrared camera and spectrograph for the Subaru Telescope , 2000, Astronomical Telescopes and Instrumentation.