High contrast and high angular imaging at Subaru Telescope

Adaptive Optics projects at Subaru Telescope span a wide field of capabilities ranging from ground-layer adaptive optics (GLAO) providing partial correction over a 20 arcmin FOV to extreme adaptive optics (ExAO) for exoplanet imaging. We describe in this paper current and upcoming narrow field-of-view capabilities provided by the Subaru Extreme Adaptive Optics Adaptive Optics (SCExAO) system and its instrument modules, as well as the upcoming 3000-actuator upgrade of the Nasmyth AO system.

[1]  D. Mawet,et al.  Exoplanet detection with photonic lanterns for focal-plane wavefront sensing and control , 2022, Astronomical Telescopes + Instrumentation.

[2]  D. Mawet,et al.  Demonstration of a photonic-lantern focal-plane wavefront sensor using fiber mode conversion and deep learning , 2022, Astronomical Telescopes + Instrumentation.

[3]  O. Guyon,et al.  Laboratory demonstrations of EFC and spatial LDFC on Subaru/SCExAO , 2022, Astronomical Telescopes + Instrumentation.

[4]  O. Guyon,et al.  AO3000 at Subaru: combining for the first time a NIR WFS using First Light’s C-RED ONE and ALPAO’s 64x64 DM , 2022, Astronomical Telescopes + Instrumentation.

[5]  O. Guyon,et al.  FIRST 5T 3D: a laser written device for FIRST/SUBARU reducing crosstalk and propagation losses , 2022, Astronomical Telescopes + Instrumentation.

[6]  O. Guyon,et al.  Hybrid electro-optic visible multi-telescope beam combiner for next generation FIRST/SUBARU instruments , 2022, Astronomical Telescopes + Instrumentation.

[7]  D. Mawet,et al.  Experimental measurements of AO-fed photonic lantern coupling efficiencies , 2022, Astronomical Telescopes + Instrumentation.

[8]  G. Perrin,et al.  Photonic chip for visible interferometry: laboratory characterization and comparison with the theoretical model , 2022, Astronomical Telescopes + Instrumentation.

[9]  D. Mawet,et al.  Spectroastrometry with photonic lanterns , 2022, Astronomical Telescopes + Instrumentation.

[10]  Jessica R. Zheng,et al.  Optical design for Subaru Nasmyth Beam Switcher , 2022, Astronomical Telescopes + Instrumentation.

[11]  O. Guyon,et al.  Differential speckle polarimetry with SCExAO VAMPIRES , 2022, Astronomical Telescopes + Instrumentation.

[12]  O. Guyon,et al.  Optimal self-calibration and fringe tracking in photonic nulling interferometers using machine learning , 2022, Astronomical Telescopes + Instrumentation.

[13]  O. Guyon,et al.  High contrast imaging at the photon noise limit with WFS-based PSF calibration , 2022, Astronomical Telescopes + Instrumentation.

[14]  O. Guyon,et al.  A visible-light Lyot coronagraph for SCExAO/VAMPIRES , 2022, Astronomical Telescopes + Instrumentation.

[15]  Timothy D. Brandt,et al.  Direct-imaging Discovery and Dynamical Mass of a Substellar Companion Orbiting an Accelerating Hyades Sun-like Star with SCExAO/CHARIS , 2022, The Astrophysical Journal Letters.

[16]  Timothy D. Brandt,et al.  Images of embedded Jovian planet formation at a wide separation around AB Aurigae , 2022, Nature Astronomy.

[17]  J. Wisniewski,et al.  Multiband Imaging of the HD 36546 Debris Disk: A Refined View from SCExAO/CHARIS , 2021, The Astronomical Journal.

[18]  S. Gross,et al.  Very high resolution spectro-interferometry with wavefront sensing capabilities on Subaru/SCExAO using photonics , 2021, Optical Engineering + Applications.

[19]  Nick Cvetojevic,et al.  Scalable photonic-based nulling interferometry with the dispersed multi-baseline GLINT instrument , 2021, Nature Communications.

[20]  Timothy D. Brandt,et al.  SCExAO/MEC and CHARIS Discovery of a Low-mass, 6 au Separation Companion to HIP 109427 Using Stochastic Speckle Discrimination and High-contrast Spectroscopy , 2021, The Astronomical Journal.

[21]  N. Jovanovic,et al.  Extremely high-contrast, high spectral resolution spectrometer REACH for the Subaru Telescope , 2020, Astronomical Telescopes + Instrumentation.

[22]  Julien Lozi,et al.  New NIR spectro-polarimetric modes for the SCExAO instrument , 2020, Astronomical Telescopes + Instrumentation.

[23]  Francois Rigaut,et al.  ULTIMATE-Subaru: system performance modeling of GLAO and wide-field NIR instruments , 2020, Astronomical Telescopes + Instrumentation.

[24]  Julien Lozi,et al.  Overview of AO activities at Subaru Telescope , 2020, Astronomical Telescopes + Instrumentation.

[25]  Romain Laugier,et al.  Status of the SCExAO instrument: recent technology upgrades and path to a system-level demonstrator for PSI , 2020, Astronomical Telescopes + Instrumentation.

[26]  Nick Cvetojevic,et al.  FIRST, a pupil-remapping fiber interferometer at the Subaru Telescope: on-sky results , 2020, Astronomical Telescopes + Instrumentation.

[27]  Yosuke Minowa,et al.  ULTIMATE-START: Subaru tomography adaptive optics research experiment project overview , 2020, Astronomical Telescopes + Instrumentation.

[28]  Timothy D. Brandt,et al.  SCExAO/CHARIS Direct Imaging Discovery of a 20 au Separation, Low-mass Ratio Brown Dwarf Companion to an Accelerating Sun-like Star , 2020, The Astrophysical Journal Letters.

[29]  O. Guyon,et al.  The MKID Exoplanet Camera for Subaru SCExAO , 2020, Publications of the Astronomical Society of the Pacific.

[30]  Julien Lozi,et al.  High-contrast Hα imaging with Subaru/SCExAO + VAMPIRES , 2020, Journal of Astronomical Telescopes, Instruments, and Systems.

[31]  Timothy D. Brandt,et al.  SCExAO/CHARIS Near-infrared Integral Field Spectroscopy of the HD 15115 Debris Disk , 2020, The Astronomical Journal.

[32]  Yosuke Minowa,et al.  ULTIMATE-Subaru: enhancing the Subaru's wide-field capability with GLAO , 2020, Micro + Nano Materials, Devices, and Applications.

[33]  Nick Cvetojevic,et al.  Diffraction-limited polarimetric imaging of protoplanetary disks and mass-loss shells with VAMPIRES , 2020, Micro + Nano Materials, Devices, and Applications.

[34]  O. Guyon,et al.  First on-sky demonstration of an integrated-photonic nulling interferometer: the GLINT instrument , 2019, Monthly Notices of the Royal Astronomical Society.

[35]  Olivier Guyon,et al.  The CHARIS IFS for high contrast imaging at Subaru , 2015, SPIE Optical Engineering + Applications.

[36]  G. Perrin,et al.  The Subaru Coronagraphic Extreme Adaptive Optics System: Enabling High-Contrast Imaging on Solar-System Scales , 2015, 1507.00017.

[37]  O. Guyon,et al.  The VAMPIRES instrument: imaging the innermost regions of protoplanetary discs with polarimetric interferometry , 2014, 1405.7426.

[38]  Olivier Guyon,et al.  Commissioning status of Subaru laser guide star adaptive optics system , 2010, Astronomical Telescopes + Instrumentation.

[39]  Olivier Guyon,et al.  Current status of the laser guide star adaptive optics system for Subaru Telescope , 2008, Astronomical Telescopes + Instrumentation.

[40]  Hiroshi Terada,et al.  Performance update of the infrared camera and spectrograph for the Subaru Telescope (IRCS) , 2004, SPIE Astronomical Telescopes + Instrumentation.

[41]  Yosuke Minowa,et al.  Performance of Subaru Cassegrain Adaptive Optics System , 2004 .

[42]  Alan T. Tokunaga,et al.  Infrared camera and spectrograph for the Subaru Telescope , 1994, Astronomical Telescopes and Instrumentation.

[43]  Olivier Guyon,et al.  High Sensitivity Wavefront Sensing with a Nonlinear Curvature Wavefront Sensor , 2009 .

[44]  Atsushi Shimono,et al.  The Kyoto Tridimensional Spectrograph II on Subaru and the University of Hawaii 88 in Telescopes , 2009 .

[45]  Hiroshi Terada,et al.  IRCS: infrared camera and spectrograph for the Subaru Telescope , 2000, Astronomical Telescopes and Instrumentation.