A Novel Perovskite Solar Cell Comprising CsPbI2Br/Cs2SnI6 (CsGeI3) Cascade Absorbing Bilayer and Cr2O3 Electron Transport Material: A Theoretical Comparison Study

[1]  Yahong Xie,et al.  Effective improvement of the carbon-based CsPbI2Br perovskite solar cells through additive and interface strategies , 2023, Optical Materials.

[2]  Yongfeng Qi,et al.  Investigation of efficient all-inorganic HTL-free CsGeI3 perovskite solar cells by device simulation , 2023, Materials Today Communications.

[3]  V. Bharti,et al.  Theoretical optimization of defect density and band offsets for CsPbI2Br based Perovskite Solar Cells. , 2022, Materials Today Communications.

[4]  M. Auf der Maur,et al.  Light-Trapping Electrode for the Efficiency Enhancement of Bifacial Perovskite Solar Cells , 2022, Nanomaterials.

[5]  A. Hagfeldt,et al.  Progress and Perspective on Inorganic CsPbI2Br Perovskite Solar Cells , 2022, Advanced Energy Materials.

[6]  S. Sahu,et al.  Design and optimization of the performance of CsPbI3 based vertical photodetector using SCAPS simulation , 2022, Optik (Stuttgart).

[7]  Kshitij Bhargava,et al.  Fundamental analysis of lead-free CsGeI3 perovskite solar cell , 2022, Materials Today: Proceedings.

[8]  Songyuan Dai,et al.  Improving the Stability and Efficiency of Inorganic Cspbi2br Perovskite Via Surface Reconstruction Strategy , 2022, SSRN Electronic Journal.

[9]  Hyung-jun Kim,et al.  Modulation of vacancy-ordered double perovskite Cs2SnI6 for air-stable thin-film transistors , 2022, Cell Reports Physical Science.

[10]  Zhenxiao Pan,et al.  Cs2SnI6 nanocrystals enhancing hole extraction for efficient carbon-based CsPbI2Br perovskite solar cells , 2022, Chemical Engineering Journal.

[11]  S. F. Akhtarianfar,et al.  High-performance CsPbI3/XPbI3 (X=MA and FA) heterojunction perovskite solar cell , 2022, Optics Communications.

[12]  Xuanhua Li,et al.  Gadolinium-incorporated CsPbI2Br for boosting efficiency and long-term stability of all-inorganic perovskite solar cells , 2022, Journal of Energy Chemistry.

[13]  A. Oudhia,et al.  Analysis of eco-friendly tin-halide Cs2SnI6-based perovskite solar cell with all-inorganic charge selective layers , 2022, Journal of Materials Science: Materials in Electronics.

[14]  Jinbiao Jia,et al.  Cr2O3 interlayer at TiO2/perovskite interface propelling the efficiency improvement of perovskite solar cells , 2022, Surfaces and Interfaces.

[15]  S. Sahu,et al.  Performance evaluation of an all inorganic CsGeI3 based perovskite solar cell by numerical simulation , 2021, Optical Materials.

[16]  U. Singh,et al.  Performance optimization of lead free-MASnI3/CIGS heterojunction solar cell with 28.7% efficiency: A numerical approach , 2021, Optical Materials.

[17]  Yongsheng Chen,et al.  Low-temperature processing of polyvinylpyrrolidone modified CsPbI2Br perovskite films for high-performance solar cells , 2021, Journal of Solid State Chemistry.

[18]  M. Yanagida,et al.  A-site tailoring in the vacancy-ordered double perovskite semiconductor Cs2SnI6 for photovoltaic application , 2021 .

[19]  Elahe Mirabi,et al.  Integration of buildings with third-generation photovoltaic solar cells: a review , 2021, Clean Energy.

[20]  A. Shalan,et al.  Composition engineering of operationally stable CsPbI2Br perovskite solar cells with a record efficiency over 17 , 2021 .

[21]  V. Bharti,et al.  Device simulation of FASnI3 based perovskite solar cell with Zn(O0.3, S0.7) as electron transport layer using SCAPS-1D , 2021 .

[22]  T. Ma,et al.  A double perovskite participation for promoting stability and performance of Carbon-Based CsPbI2Br perovskite solar cells. , 2021, Journal of colloid and interface science.

[23]  Asim Rashid,et al.  Performance evaluation of Au/p-CdTe/Cs2TiI6/n-TiO2/ITO solar cell using SCAPS-1D , 2021, Optical Materials.

[24]  Kun Liu,et al.  Ambient Air Temperature Assisted Crystallization for Inorganic CsPbI2Br Perovskite Solar Cells , 2021, Molecules.

[25]  Liang Li,et al.  Improving UV stability of perovskite solar cells without sacrificing efficiency through light trapping regulated spectral modification. , 2021, Science bulletin.

[26]  Zhihai Liu,et al.  A combined chrome oxide and titanium oxide based electron-transport layer for high-performance perovskite solar cells , 2021 .

[27]  S. Mali,et al.  Implementing Dopant-Free Hole-Transporting Layers and Metal-Incorporated CsPbI2Br for Stable All-Inorganic Perovskite Solar Cells , 2021, ACS energy letters.

[28]  L. Etgar,et al.  Effect of Perovskite Thickness on Electroluminescence and Solar Cell Conversion Efficiency , 2020, The journal of physical chemistry letters.

[29]  Xiaodong Li,et al.  Effective Surface Treatment for High-Performance Inverted CsPbI2Br Perovskite Solar Cells with Efficiency of 15.92% , 2020, Nano-Micro Letters.

[30]  J. Bouclé,et al.  Experimental and SCAPS simulated formamidinium perovskite solar cells: A comparison of device performance , 2020 .

[31]  Xiao Nairui,et al.  One-step solution synthesis and stability study of inorganic perovskite semiconductor Cs2SnI6 , 2020 .

[32]  Duofa Wang,et al.  All‐Inorganic CsPbI 2 Br Perovskite Solar Cell with Open‐Circuit Voltage over 1.3 V by Balancing Electron and Hole Transport , 2020, Solar RRL.

[33]  T. Miyasaka,et al.  Voc over 1.4 V for amorphous tin oxide-based dopant-free CsPbI2Br perovskite solar cells. , 2020, Journal of the American Chemical Society.

[34]  Jinsong Hu,et al.  High‐Efficiency CsPbI2Br Perovskite Solar Cells with Dopant‐Free Poly(3‐hexylthiophene) Hole Transporting Layers , 2020, Advanced Energy Materials.

[35]  M. Courel,et al.  Optimization of CH3NH3PbI3 perovskite solar cells: A theoretical and experimental study , 2020 .

[36]  Ping Li,et al.  Simulated development and optimized performance of CsPbI3 based all-inorganic perovskite solar cells , 2020 .

[37]  S. Ghorashi,et al.  Yolk-shell SnO2@TiO2 nanospheres as electron transport layer in mesoscopic perovskite solar cell , 2020, Journal of Sol-Gel Science and Technology.

[38]  A. Listorti,et al.  Optimizing the Interface between Hole Transporting Material and Nanocomposite for Highly Efficient Perovskite Solar Cells , 2019, Nanomaterials.

[39]  X. Zhang,et al.  Promoting the Hole Extraction with Co 3 O 4 Nanomaterials for Efficient Carbon‐Based CsPbI 2 Br Perovskite Solar Cells , 2019, Solar RRL.

[40]  Wen Chen,et al.  Bandgap aligned Cu12Sb4S13 quantum dots as efficient inorganic hole transport materials in planar perovskite solar cells with enhanced stability , 2019, Sustainable Energy & Fuels.

[41]  M. Grätzel,et al.  Europium-Doped CsPbI2Br for Stable and Highly Efficient Inorganic Perovskite Solar Cells , 2019, Joule.

[42]  Wei Zhang,et al.  Inorganic CsPbI2 Br Perovskite Solar Cells: The Progress and Perspective , 2018, Solar RRL.

[43]  Q. Wang,et al.  Graded Bandgap CsPbI2+Br1− Perovskite Solar Cells with a Stabilized Efficiency of 14.4% , 2018, Joule.

[44]  M. B. Zarandi,et al.  Effect of crystallization strategies on CH3NH3PbI3 perovskite layer deposited by spin coating method: Dependence of photovoltaic performance on morphology evolution , 2018, Thin Solid Films.

[45]  Jie Cao,et al.  Interstitial Occupancy by Extrinsic Alkali Cations in Perovskites and Its Impact on Ion Migration , 2018, Advanced materials.

[46]  Liyuan Han,et al.  Solvent engineering for efficient inverted perovskite solar cells based on inorganic CsPbI2Br light absorber , 2018, Materials Today Energy.

[47]  O. Park,et al.  Work function optimization of vacuum free top-electrode by PEDOT:PSS/PEI interaction for efficient semi-transparent perovskite solar cells , 2018 .

[48]  Xin He,et al.  Annealing-Free Cr2 O3 Electron-Selective Layer for Efficient Hybrid Perovskite Solar Cells. , 2018, ChemSusChem.

[49]  Huicong Liu,et al.  Inorganic Perovskite Solar Cells: A Rapidly Growing Field , 2018 .

[50]  Guolin Hou,et al.  CH3NH3PbI3/GeSe bilayer heterojunction solar cell with high performance , 2017, 1712.01369.

[51]  D. Mitzi,et al.  Thin-Film Deposition and Characterization of a Sn-Deficient Perovskite Derivative Cs2SnI6 , 2016 .

[52]  S. Lany Semiconducting transition metal oxides , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[53]  Tobin J Marks,et al.  Air-stable molecular semiconducting iodosalts for solar cell applications: Cs2SnI6 as a hole conductor. , 2014, Journal of the American Chemical Society.

[54]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[55]  Samaneh Mozaffari,et al.  Effects of water-based gel electrolyte on the charge recombination and performance of dye-sensitized solar cells , 2014, Journal of Solid State Electrochemistry.

[56]  Samaneh Mozaffari,et al.  Effect of single-wall carbon nanotubes on the properties of polymeric gel electrolyte dye-sensitized solar cells , 2014, Journal of Solid State Electrochemistry.

[57]  Timothy L. Kelly,et al.  Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques , 2013, Nature Photonics.

[58]  Sandeep Kumar Pathak,et al.  Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells , 2013, Nature Communications.

[59]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[60]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[61]  J. Park,et al.  Electronic transport in thermally grown Cr2O3 , 1990 .

[62]  P. Yadav,et al.  The effect of B-site doping in all-inorganic CsPbIxBr3−x absorbers on the performance and stability of perovskite photovoltaics , 2023, Energy & Environmental Science.

[63]  Z. Ge,et al.  Interfacial Engineering Strategy Based on Polymer Modification to Regulate the Residual Stress in Cspbi2br Based Perovskite Solar Cells , 2022, SSRN Electronic Journal.

[64]  H. Ez‐zahraouy,et al.  Unravelling the theoretical window to fabricate high performance inorganic perovskite solar cells , 2021, Sustainable Energy & Fuels.

[65]  Manish Kumar,et al.  Evidence of improved power conversion efficiency in lead-free CsGeI3 based perovskite solar cell heterostructure via scaps simulation , 2021 .

[66]  A. Agarwal,et al.  Computational analysis of cesium based inorganic perovskite solar cells using SCAPS-1D , 2020 .

[67]  D. Mullarkey Utilising Chromium-Based p-Type Transparent Conducting Oxides in Photovoltaic Devices , 2018 .

[68]  H. Zeng,et al.  From unstable CsSnI3 to air-stable Cs2SnI6: A lead-free perovskite solar cell light absorber with bandgap of 1.48 eV and high absorption coefficient , 2017 .

[69]  Yong Qiu,et al.  Study on the stability of CH3NH3PbI3films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells , 2014 .