Alloy engineered germanium monochalcogenide with tunable bandgap for broadband optoelectrical applications

Germanium monochalcogenides (GeSe and GeS) are promising materials for various optoelectronic applications because of their solar range bandgaps, high carrier mobilities, high stabilities, earth abundance, and anisotropic optical properties. Precise control of germanium monochalcogenide bandgaps is critical to applications in continuously tunable optoelectronics. In this paper, we combine first-principles calculations and experiments to predict and confirm that alloy engineering is a significant strategy for tailoring germanium monochalcogenide (${\mathrm{GeS}}_{1\ensuremath{-}x}{\mathrm{Se}}_{x}$) optoelectronic properties. When the Se content $x$ increases from 0.0 to 1.0, the bandgap decreases from 1.23 to 0.89 eV. In addition, there is a direct-indirect bandgap transition when $x$ is approximately 0.3. Tunable ${\mathrm{GeS}}_{1\ensuremath{-}x}{\mathrm{Se}}_{x}$ bandgaps can open up exciting opportunities for the development of various electronic and optoelectronic devices.

[1]  Xiuxian Yang,et al.  Thermal transport properties in monolayer GeS , 2019, Physics Letters A.

[2]  Le Yu,et al.  Promising GeSe Nanosheet-Based Thin-Film Photocathode for Efficient and Stable Overall Solar Water Splitting , 2019, ACS Catalysis.

[3]  Weiling Zhu,et al.  Enhanced photocatalytic activity for water splitting of blue-phase GeS and GeSe monolayers via biaxial straining. , 2019, Nanoscale.

[4]  Jinsong Hu,et al.  In‐Plane Optical Anisotropy of Low‐Symmetry 2D GeSe , 2018, Advanced Optical Materials.

[5]  M. Weinert,et al.  Layer k -projection and unfolding electronic bands at interfaces , 2018, Physical Review B.

[6]  Jeongyong Kim,et al.  Composition-Tunable Synthesis of Large-Scale Mo1- xW xS2 Alloys with Enhanced Photoluminescence. , 2018, ACS nano.

[7]  G. Bi,et al.  Effect of tensile strain on the band structure and carrier transport of germanium monosulphide monolayer: a first-principles study , 2018 .

[8]  P. Ajayan,et al.  Strain relaxation via formation of cracks in compositionally modulated two-dimensional semiconductor alloys , 2018, npj 2D Materials and Applications.

[9]  Ying Dai,et al.  Two-dimensional GeSe for high performance thin-film solar cells , 2018 .

[10]  Congsheng Xu,et al.  Effect of stacking order and in-plane strain on the electronic properties of bilayer GeSe. , 2018, Physical chemistry chemical physics : PCCP.

[11]  Congsheng Xu,et al.  Band Structure and Photoelectric Characterization of GeSe Monolayers , 2018 .

[12]  Yunfei Chen,et al.  A convenient method of manufacturing liquid-gated MoS2 field effect transistors , 2017 .

[13]  C. Duan,et al.  Electrically tunable polarizer based on 2D orthorhombic ferrovalley materials , 2017, 1706.06374.

[14]  Vijay Kumar,et al.  Bandgap engineering in semiconducting one to few layers of SnS and SnSe , 2017 .

[15]  Wenjin Zhang,et al.  Anisotropic optical and electronic properties of two-dimensional layered germanium sulfide , 2017, Nano Research.

[16]  Xiaofeng Qian,et al.  Two-dimensional multiferroics in monolayer group IV monochalcogenides , 2017 .

[17]  L. Wan,et al.  GeSe Thin-Film Solar Cells Fabricated by Self-Regulated Rapid Thermal Sublimation. , 2017, Journal of the American Chemical Society.

[18]  Chun‐Sing Lee,et al.  Composition and Interface Engineering of Alloyed MoS2 x Se2(1- x ) Nanotubes for Enhanced Hydrogen Evolution Reaction Activity. , 2016, Small.

[19]  Xiaofeng Qian,et al.  Two-dimensional multiferroics in monolayer group IV monochalcogenides , 2016, 1606.04522.

[20]  M. Kanatzidis,et al.  Computational Prediction of High Thermoelectric Performance in Hole Doped Layered GeSe , 2016 .

[21]  Richard H. Friend,et al.  Photon recycling in lead iodide perovskite solar cells , 2016, Science.

[22]  Fugen Wu,et al.  Structural anisotropy results in strain-tunable electronic and optical properties in monolayer GeX and SnX (X = S, Se, Te). , 2016, The Journal of chemical physics.

[23]  R. Sankar,et al.  High photosensitivity and broad spectral response of multi-layered germanium sulfide transistors. , 2016, Nanoscale.

[24]  Jong‐Soo Lee,et al.  Solution synthesis of GeS and GeSe nanosheets for high-sensitivity photodetectors , 2016 .

[25]  Zhenxing Wang,et al.  Enhanced Electrochemical H2 Evolution by Few‐Layered Metallic WS2(1−x)Se2x Nanoribbons , 2015 .

[26]  H. Zeng,et al.  GeSe monolayer semiconductor with tunable direct band gap and small carrier effective mass , 2015 .

[27]  Qingfeng Dong,et al.  Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination , 2015, Nature Photonics.

[28]  B. Xiang,et al.  Synthesis and Enhanced Electrochemical Catalytic Performance of Monolayer WS2(1–x)Se2x with a Tunable Band Gap , 2015, Advances in Materials.

[29]  Yi Yin,et al.  Synthesis of single-crystalline GeS nanoribbons for high sensitivity visible-light photodetectors , 2015 .

[30]  X. Duan,et al.  Lateral Growth of Composition Graded Atomic Layer MoS(2(1-x))Se(2x) Nanosheets. , 2015, Journal of the American Chemical Society.

[31]  X. Duan,et al.  Growth of alloy MoS(2x)Se2(1-x) nanosheets with fully tunable chemical compositions and optical properties. , 2014, Journal of the American Chemical Society.

[32]  Sefaattin Tongay,et al.  Two-dimensional semiconductor alloys: Monolayer Mo1−xWxSe2 , 2014 .

[33]  H. Tan,et al.  NIR Schottky photodetectors based on individual single-crystalline GeSe nanosheet. , 2013, ACS applied materials & interfaces.

[34]  Dimitri D. Vaughn,et al.  Single-crystal colloidal nanosheets of GeS and GeSe. , 2010, Journal of the American Chemical Society.

[35]  M. Agarwal,et al.  Synthesis and characterization of germanium monosulphide (GeS) single crystals grown using different transporting agents , 2010 .

[36]  A. Ruban,et al.  Mixing and decomposition thermodynamics of c-Ti1-xAlxN from first-principles calculations , 2007 .

[37]  X. Lin,et al.  Photocatalytic activity of a Bi-based oxychloride Bi3O4Cl , 2006 .

[38]  G. Ceder,et al.  The Alloy Theoretic Automated Toolkit: A User Guide , 2002, cond-mat/0212159.

[39]  A. N. Smirnov,et al.  Composition dependence of optical phonon energies and Raman line broadening in hexagonal Al x Ga 1 − x N alloys , 2002 .

[40]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[41]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[42]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[43]  J. Málek The thermal stability of chalcogenide glasses , 1993 .

[44]  B. Segall,et al.  Anomalous band-gap behavior and phase stability of c-BN-diamond alloys. , 1993, Physical review. B, Condensed matter.

[45]  F. Ducastelle,et al.  Generalized cluster description of multicomponent systems , 1984 .

[46]  M. Gambino,et al.  The germanium-selenium phase diagram , 1982 .

[47]  I. F. Chang,et al.  Application of a Modified Random-Element-Isodisplacement Model to Long-Wavelength Optic Phonons of Mixed Crystals , 1968 .

[48]  R. Grigorovici,et al.  Optical Properties and Electronic Structure of Amorphous Germanium , 1966, 1966.