Demonstration of Aerosol Property Profiling by Multiwavelength Lidar Under Varying Relative Humidity Conditions

The feasibility of using a multiwavelength Mie‐Raman lidar based on a tripled Nd:YAG laser for profiling aerosol physical parameters in the planetary boundary layer (PBL) under varying conditions of relative humidity (RH) is studied. The lidar quantifies three aerosol backscattering and two extinction coefficients and from these optical data the particle parameters such as concentration, size, and complex refractive index are retrieved through inversion with regularization. The column-integrated, lidar-derived parameters are compared with results from the AERONET sun photometer. The lidar and sun photometer agree well in the characterization of the fine-mode parameters, however the lidar shows less sensitivity to coarse mode. The lidar results reveal a strong dependence of particle properties on RH. The height regions with enhanced RH

[1]  T. Eck,et al.  Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations , 2002 .

[2]  D. J. Mackinnon The Effect of Hygroscopic Particles on the Backscattered Power from a Laser Beam , 1969 .

[3]  S. H. Melfi,et al.  Raman lidar measurements of aerosol extinction and backscattering. 1. Methods and comparisons , 1998 .

[4]  C. N. Davies The Character and Origins of Smog Aerosols , 1981 .

[5]  I. Tang,et al.  Composition and temperature dependence of the deliquescence properties of hygroscopic aerosols , 1993 .

[6]  L. Chen,et al.  Origins of fine aerosol mass in the Baltimore–Washington corridor: implications from observation, factor analysis, and ensemble air parcel back trajectories , 2002 .

[7]  Arnold Wexler,et al.  Vapor Pressure Formulation for Water in Range 0 to 100 °C. A Revision , 1976, Journal of research of the National Bureau of Standards. Section A, Physics and chemistry.

[8]  Peter V. Hobbs,et al.  Humidification factors for atmospheric aerosols off the mid‐Atlantic coast of the United States , 1999 .

[9]  S. H. Melfi,et al.  Raman lidar system for the measurement of water vapor and aerosols in the Earth's atmosphere. , 1992, Applied optics.

[10]  Mark J. Rood,et al.  Mixtures of pollution, dust, sea salt, and volcanic aerosol during ACE‐Asia: Radiative properties as a function of relative humidity , 2003 .

[11]  R. Ferrare,et al.  Application of aerosol hygroscopicity measured at the Atmospheric Radiation Measurement Program's Southern Great Plains site to examine composition and evolution , 2006 .

[12]  D. Müller,et al.  Information content of multiwavelength lidar data with respect to microphysical particle properties derived from eigenvalue analysis. , 2005, Applied optics.

[13]  Bruce Morley,et al.  Aerosol hygroscopic properties as measured by lidar and comparison with in situ measurements , 2003 .

[14]  J. Abbatt,et al.  Organic acids as cloud condensation nuclei: Laboratory studies of highly soluble and insoluble species , 2003 .

[15]  David N Whiteman,et al.  New Examination of the Traditional Raman Lidar Technique II: Evaluating the Ratios for Water Vapor and Aerosols , 2013 .

[16]  Feasibility of Using Multiwavelength Lidar Measurements to Measure Cloud Condensation Nuclei , 1994 .

[17]  Albert Ansmann,et al.  European pollution outbreaks during ACE 2: Optical particle properties inferred from multiwavelength lidar and star-Sun photometry , 2002 .

[18]  M. Petters,et al.  Deliquescence‐controlled activation of organic aerosols , 2006 .

[19]  David N. Whiteman,et al.  Cloud Liquid Water, Mean Droplet Radius and Number Density Measurements Using a Raman Lidar , 1999 .

[20]  M. Facchini,et al.  A simplified model of the water soluble organic component of atmospheric aerosols , 2001 .

[21]  Vladimir A. Kovalev,et al.  Elastic Lidar: Theory, Practice, and Analysis Methods , 2004 .

[22]  S. Twomey Introduction to the Mathematics of Inversion in Remote Sensing and Indirect Measurements , 1997 .

[23]  Volker Wulfmeyer,et al.  On the relationship between relative humidity and particle backscattering coefficient in the marine boundary layer determined with differential absorption lidar , 2000 .

[24]  John R. Potter,et al.  Demonstration Measurements of Water Vapor, Cirrus Clouds, and Carbon Dioxide Using a High-Performance Raman Lidar , 2007 .

[25]  D. Müller,et al.  Inversion of multiwavelength Raman lidar data for retrieval of bimodal aerosol size distribution. , 2004, Applied optics.

[26]  Albert Ansmann,et al.  European pollution outbreaks during ACE 2: Microphysical particle properties and single-scattering albedo inferred from multiwavelength lidar observations , 2002 .

[27]  T. Eck,et al.  Accuracy assessments of aerosol optical properties retrieved from AERONET Sun and sky-radiance measurements , 1999 .

[28]  J. W. Fitzgerald,et al.  The Size and Scattering Coefficient of Urban Aerosol Particles at Washington, DC as a Function of Relative Humidity. , 1982 .

[29]  Joseph Sanak,et al.  Relative humidity impact on aerosol parameters in a Paris suburban area , 2005 .

[30]  E. Eloranta,et al.  High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: theory and instrumentation. , 1983, Applied optics.

[31]  L. Brasseur,et al.  Raman lidar measurements of the aerosol extinction‐to‐backscatter ratio over the Southern Great Plains , 2001 .

[32]  Patrick Chazette,et al.  Retrieval of aerosol complex refractive index from a synergy between lidar, sunphotometer and in situ measurements during LISAIR experiment , 2007 .

[33]  U. Wandinger,et al.  Inversion with regularization for the retrieval of tropospheric aerosol parameters from multiwavelength lidar sounding. , 2002, Applied optics.

[34]  Juan Cuesta,et al.  Synergetic technique combining elastic backscatter lidar data and sunphotometer AERONET inversion for retrieval by layer of aerosol optical and microphysical properties. , 2008, Applied optics.

[35]  A. Ansmann,et al.  Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: theory. , 1999, Applied optics.

[36]  U. Baltensperger,et al.  Hygroscopic properties of submicrometer atmospheric aerosol particles measured with H-TDMA instruments in various environments—a review , 2008 .

[37]  R. Charlson,et al.  Atmospheric aerosols, humidity, and visibility , 1980 .

[38]  T. Eck,et al.  Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements , 2000 .

[39]  John H. Seinfeld,et al.  Sensitivity of direct climate forcing by atmospheric aerosols to aerosol size and composition , 1995 .

[40]  C. Zerefos,et al.  Raman lidar and sunphotometric measurements of aerosol optical properties over Thessaloniki, Greece during a biomass burning episode , 2003 .

[41]  Erik Swietlicki,et al.  Hygroscopic growth and critical supersaturations for mixed aerosol particles of inorganic and organic compounds of atmospheric relevance , 2005 .

[42]  D. Rader,et al.  Application of the tandem differential mobility analyzer to studies of droplet growth or evaporation , 1986 .

[43]  Zhaoyan Liu,et al.  Extinction-to-backscatter ratio of Asian dust observed with high-spectral-resolution lidar and Raman lidar. , 2002, Applied optics.

[44]  A. Stohl,et al.  Raman lidar observations of aged Siberian and Canadian forest fire smoke in the free troposphere over Germany in 2003 : Microphysical particle characterization , 2005 .

[45]  David D. Turner,et al.  Automated Retrievals of Water Vapor and Aerosol Profiles from an Operational Raman Lidar , 2002 .

[46]  Gottfried Hänel,et al.  The Properties of Atmospheric Aerosol Particles as Functions of the Relative Humidity at Thermodynamic Equilibrium with the Surrounding Moist Air , 1976 .

[47]  R. Ferrare,et al.  Raman lidar measurements of aerosol extinction and backscattering 2. Derivation of aerosol real refractive index, single-scattering albedo, and humidification factor using Raman lidar , 1998 .

[48]  A. Ansmann,et al.  Combined raman elastic-backscatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter, and LIDAR ratio , 1992 .

[49]  A. Ansmann,et al.  Closure study on optical and microphysical properties of a mixed urban and Arctic haze air mass observed with Raman lidar and Sun photometer , 2004 .

[50]  Albert Ansmann,et al.  Vertical profiling of the Indian aerosol plume with six‐wavelength lidar during INDOEX: A first case study , 2000 .

[51]  Eric P. Shettle,et al.  Atmospheric Aerosols: Global Climatology and Radiative Characteristics , 1991 .

[52]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[53]  Detlef Müller,et al.  Theory of inversion with two-dimensional regularization: profiles of microphysical particle properties derived from multiwavelength lidar measurements. , 2008, Applied optics.

[54]  David N Whiteman,et al.  Examination of the traditional Raman lidar technique. I. Evaluating the temperature-dependent lidar equations. , 2003, Applied optics.

[55]  I. Tang Chemical and size effects of hygroscopic aerosols on light scattering coefficients , 1996 .

[56]  M. Parlange,et al.  Characteristics of PM2.5 Episodes Revealed by Semi-Continuous Measurements at the Baltimore Supersite at Ponca St , 2006 .

[57]  Peter V. Hobbs,et al.  Humidification factors of aerosols from biomass burning in Brazil , 1998 .

[58]  D. Althausen,et al.  Comprehensive particle characterization from three-wavelength Raman-lidar observations: case study. , 2001, Applied optics.