Breeding adjustment of small mammals to avoid predation
暂无分享,去创建一个
[1] W. Leontief. Studies in the Structure of the American Economy: Theoretical and Empirical Explorations in Input-Output Analysis , 1953 .
[2] J. Hale,et al. Methods of Bifurcation Theory , 1996 .
[3] S. Levin. Lectu re Notes in Biomathematics , 1983 .
[4] Richard Bellman,et al. Differential-Difference Equations , 1967 .
[5] M. Kalecki,et al. A Macrodynamic Theory of Business Cycles , 1935 .
[6] R. D. Driver,et al. Ordinary and Delay Differential Equations , 1977 .
[7] Giancarlo Gandolfo,et al. Mathematical methods and models in economic dynamics , 1971 .
[8] O. Mustonen,et al. Influence of predation risk on early development and maturation in three species of Clethrionomys voles , 1993 .
[9] K. Gopalsamy. Stability and Oscillations in Delay Differential Equations of Population Dynamics , 1992 .
[10] Hanna Kokko,et al. BREEDING SUPPRESSION AND PREDATOR–PREY DYNAMICS , 2000 .
[11] G. Sell,et al. The Hopf Bifurcation and Its Applications , 1976 .
[12] H. Ylönen,et al. Behaviour of cyclic bank voles under risk of mustelid predation: do females avoid copulations? , 1994, Oecologia.
[13] H. Ylönen,et al. Antipredatory behaviour of Clethrionomys voles―David and Goliath' arms race , 1992 .
[14] Lauri Oksanen,et al. Optimization of reproductive effort and foraging time in mammals: The influence of resource level and predation risk , 2005, Evolutionary Ecology.
[15] J. Craggs. Applied Mathematical Sciences , 1973 .
[16] J. Valkama,et al. Reproductive investment under fluctuating predation risk: Microtine rodents and small mustelids , 1994, Evolutionary Ecology.
[17] N. G. Parke,et al. Ordinary Differential Equations. , 1958 .
[18] M. Hasse,et al. W. H. Greub, Multilinear Algebra. (Die Grundlehren der mathematischen Wissenschaften. Band 136). XII + 225 S. Berlin/Heidelberg/New York 1967. Springer-Verlag. Preis geb. DM 32,– , 1971 .
[19] I. Hanski,et al. A predator-prey model with optimal suppression of reproduction in the prey. , 1996, Mathematical biosciences.
[20] V. Arnold,et al. Ordinary Differential Equations , 1973 .
[21] Jack K. Hale,et al. Introduction to Functional Differential Equations , 1993, Applied Mathematical Sciences.
[22] H. Ylönen. Vole cycles and antipredatory behaviour. , 1994, Trends in ecology & evolution.
[23] H. Ylönen,et al. Breeding suppression in the bank vole as antipredatory adaptation in a predictable environment , 1994, Evolutionary Ecology.
[24] E. Koskela,et al. Suppressed breeding in the field vole (Microtus agrestis): an adaptation to cyclically fluctuating predation risk , 1995 .
[25] S. L. Lima,et al. Predator–induced breeding suppression and its consequences for predator–prey population dynamics , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.
[26] D. Hik. Does risk of predation influence population dynamics? Evidence from cyclic decline of snowshoe hares , 1995 .
[27] N. Macdonald. Time lags in biological models , 1978 .
[28] H. Ylönen. Weasels Mustela Nivalis Suppress Reproduction in Cyclic Bank Voles Clethrionomys Glareolus , 1989 .
[29] S. L. Lima,et al. Behavioral decisions made under the risk of predation: a review and prospectus , 1990 .