The Evolving Faint End of the Luminosity Function

We investigate the evolution of the faint-end slope of the luminosity function, α, using semianalytical modeling of galaxy formation. In agreement with observations, we find that the slope can be fitted well by α(z) = a + bz, with a = -1.13 and b = -0.1. The main driver for the evolution in α is the evolution in the underlying dark matter mass function. Sub-L* galaxies reside in dark matter halos that occupy a different part of the mass function. This part of the mass function is steeper at high redshifts than at low redshifts, and hence α is steeper. Supernova feedback in general causes the same relative flattening with respect to the dark matter mass function. The faint-end slope at low redshifts is dominated by field galaxies, and at high redshifts by cluster galaxies. The evolution of α(z) in each of these environments is different, with field galaxies having a slope b = -0.14 and cluster galaxies having a slope b = -0.05. The transition from a cluster-dominated to a field-dominated faint-end slope occurs roughly at a redshift z* 2 and suggests that a single linear fit to the overall evolution of α(z) might not be appropriate. Furthermore, this result indicates that tidal disruption of dwarf galaxies in clusters cannot play a significant role in explaining the evolution of α(z) at z < z*. In addition, we find that different star formation efficiencies a* in the Schmidt-Kennicutt law and supernova-feedback efficiencies generally do not strongly influence the evolution of α(z).

[1]  Oxford,et al.  Breaking the hierarchy of galaxy formation , 2005, astro-ph/0511338.

[2]  R. Nichol,et al.  The Galaxy Luminosity Function and Luminosity Density at Redshift z = 0.1 , 2002, astro-ph/0210215.

[3]  D. Madgwick,et al.  The 2dF Galaxy Redshift Survey: The bJ-band galaxy luminosity function and survey selection function , 2001, astro-ph/0111011.

[4]  S. Khochfar,et al.  The Importance of Spheroidal and Mixed Mergers for Early-Type Galaxy Formation , 2003, astro-ph/0303529.

[5]  Marijn Franx,et al.  The Rest-Frame Optical Luminosity Functions of Galaxies at 2≤z≤3.5 , 2006, astro-ph/0610484.

[6]  J. Huchra,et al.  The Luminosity function for different morphological types in the CfA redshift survey , 1994 .

[7]  THE GALAXY LUMINOSITY FUNCTION IN CLUSTERS AND THE FIELD , 1997 .

[8]  Durham,et al.  What Shapes the Luminosity Function of Galaxies? , 2003, astro-ph/0302450.

[9]  S. Khochfar,et al.  Properties of Early-Type, Dry Galaxy Mergers and the Origin of Massive Elliptical Galaxies , 2005, astro-ph/0509667.

[10]  S. Dye,et al.  The evolution of faint AGN between z ' 1 and z ' 5 from the COMBO-17 survey , 2003 .

[11]  On the origin of isophotal shapes in elliptical galaxies , 2004, astro-ph/0409705.

[12]  A. Ferrara,et al.  Starburst-driven Mass Loss from Dwarf Galaxies: Efficiency and Metal Ejection , 1998, astro-ph/9801237.

[13]  M. Brodwin,et al.  The Evolving Luminosity Function of Red Galaxies , 2006, astro-ph/0609584.

[14]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[15]  Simulations of Cosmic Chemical Enrichment , 2006, astro-ph/0604107.

[16]  Oswald H. W. Siegmund,et al.  The Ultraviolet Galaxy Luminosity Function in the Local Universe from GALEX Data , 2004 .

[17]  Haojing Yan,et al.  Candidates of z ≃ 5.5-7 Galaxies in the Hubble Space Telescope Ultra Deep Field , 2004 .

[18]  D. Syer,et al.  Survival of substructure within dark matter haloes , 1997, astro-ph/9712222.

[19]  J. Silk,et al.  Dwarf galaxies, cold dark matter, and biased galaxy formation , 1986 .

[20]  U. California,et al.  How to plant a merger tree , 1997, astro-ph/9711080.

[21]  M. Franx,et al.  Galaxies at z~6: The UV Luminosity Function and Luminosity Density from 506 UDF, UDF-Ps, and GOODS i-dropouts , 2005, astro-ph/0509641.

[22]  J. Rigby,et al.  Strong Dusty Bursts of Star Formation in Galaxies Falling into the Cluster RX J0152.7–1357 , 2006, astro-ph/0610578.

[23]  P. Schechter An analytic expression for the luminosity function for galaxies , 1976 .

[24]  William H. Press,et al.  Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravitational Condensation , 1974 .

[25]  M. Treyer,et al.  The UV Galaxy Luminosity Function in the Local Universe from GALEX Data , 2003 .

[26]  R. Windhorst,et al.  The Major Sources of the Cosmic Reionizing Background at z ≃ 6 , 2003, astro-ph/0312572.

[27]  D. Thompson,et al.  Keck Deep Fields. III. Luminosity-dependent Evolution of the Ultraviolet Luminosity and Star Formation Rate Densities at z~4, 3, and 2 , 2006, astro-ph/0605406.

[28]  On the origin of stars in bulges and elliptical galaxies , 2005, astro-ph/0509375.

[29]  Jr.,et al.  The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.

[30]  Probing the star formation history using the redshift evolution of luminosity functions , 2006, astro-ph/0612271.

[31]  S. Khochfar,et al.  Redshift Evolution of the Merger Fraction of Galaxies in Cold Dark Matter Cosmologies , 2001, astro-ph/0105383.