Entangling protocols due to non-Markovian dynamics

It is widely spread in the literature that non-Markovianity (NM) may be regarded as a resource in quantum mechanics. However, it is still unclear how and when this alleged resource may be exploited. Here, we study the relationship between NM and quantum optimal control under the objective of generating entanglement within M non-interacting subsystems, each one coupled to the same non-Markovian environment. Thus, we design a variety of entangling protocols that are only achievable due to the existence of the environment. We show that NM plays a crucial role in all the entangling protocols considered, revealing that the degree of NM completely determines the success of the entangling operation performed by the control. This is a demonstration of the virtues of NM and the way that it can be exploited in a general entangling setup.

[1]  Sebastian Deffner,et al.  Environment-Assisted Speed-up of the Field Evolution in Cavity Quantum Electrodynamics. , 2015, Physical review letters.

[2]  Sophie Schirmer,et al.  Robust quantum gates for open systems via optimal control: Markovian versus non-Markovian dynamics , 2011, 1107.4358.

[3]  Heinz-Peter Breuer,et al.  Foundations and measures of quantum non-Markovianity , 2012, 1206.5346.

[4]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[5]  Fabio Benatti,et al.  Environment induced entanglement in Markovian dissipative dynamics. , 2003, Physical review letters.

[6]  S. Maniscalco,et al.  DYNAMICS OF QUANTUM CORRELATIONS IN TWO-QUBIT SYSTEMS WITHIN NON-MARKOVIAN ENVIRONMENTS , 2012, 1205.6419.

[7]  S. Maniscalco,et al.  Comparative study of non-Markovianity measures in exactly solvable one- and two-qubit models , 2014, 1402.4975.

[8]  Diego A. Wisniacki,et al.  Measuring and using non-Markovianity , 2015, 1505.03503.

[9]  E. Lutz,et al.  Quantum speed limit for non-Markovian dynamics. , 2013, Physical review letters.

[10]  Rosario Lo Franco,et al.  Harnessing non-Markovian quantum memory by environmental coupling , 2015, 1506.08293.

[11]  Christiane P. Koch,et al.  Exploiting Non-Markovianity for Quantum Control , 2014, Scientific Reports.

[12]  F. Lombardo,et al.  Driving-induced amplification of non-Markovianity in open quantum systems evolution , 2017, 1705.01126.

[13]  Sophie Shermer Training Schrödinger’s cat: quantum optimal control , 2015 .

[14]  F. Verstraete,et al.  Quantum computation and quantum-state engineering driven by dissipation , 2009 .

[15]  Hsi-Sheng Goan,et al.  Optimal control for non-Markovian open quantum systems , 2012, 1203.6128.

[16]  Elsi-Mari Laine,et al.  Colloquium: Non-Markovian dynamics in open quantum systems , 2015, 1505.01385.

[17]  J. Bekenstein Energy Cost of Information Transfer , 1981 .

[18]  S. Wissmann,et al.  Optimal state pairs for non-Markovian quantum dynamics , 2012, 1209.4989.

[19]  Thomas Schulte-Herbrüggen,et al.  Illustrating the Geometry of Coherently Controlled Unital Open Quantum Systems , 2011, IEEE Transactions on Automatic Control.

[20]  J. Ankerhold,et al.  Optimal control of open quantum systems: cooperative effects of driving and dissipation. , 2010, Physical review letters.

[21]  Christiane P Koch,et al.  Controlling open quantum systems: tools, achievements, and limitations , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[22]  P. Alam ‘T’ , 2021, Composites Engineering: An A–Z Guide.

[23]  Francesco Ciccarello,et al.  Dynamical decoupling efficiency versus quantum non-Markovianity , 2015, 1502.02528.

[24]  Non-Markovian dynamics in a spin star system: Exact solution and approximation techniques , 2004, quant-ph/0401051.

[25]  Franco Nori,et al.  QuTiP: An open-source Python framework for the dynamics of open quantum systems , 2011, Comput. Phys. Commun..

[26]  F. Toscano,et al.  Quantum-speed-limit bounds in an open quantum evolution , 2016, 1609.04396.

[27]  S. Maniscalco,et al.  Non-Markovianity and reservoir memory of quantum channels: a quantum information theory perspective , 2014, Scientific Reports.

[28]  Leonardo A. Pachon,et al.  Quantum limit for driven linear non-Markovian open-quantum-systems , 2014, 1411.3382.

[29]  N. Khaneja,et al.  Optimal control for generating quantum gates in open dissipative systems , 2006, quant-ph/0609037.

[30]  Jyrki Piilo,et al.  Measure for the degree of non-markovian behavior of quantum processes in open systems. , 2009, Physical review letters.

[31]  D. Burgarth,et al.  Control of open quantum systems: case study of the central spin model , 2013, 1312.0160.

[32]  G. Compagno,et al.  Non-markovian effects on the dynamics of entanglement. , 2007, Physical review letters.

[33]  H. Breuer,et al.  Correlated projection operator approach to non-Markovian dynamics in spin baths , 2007, 0708.0410.

[34]  M B Plenio,et al.  Controllable Non-Markovianity for a Spin Qubit in Diamond. , 2018, Physical review letters.

[35]  S. Lloyd Ultimate physical limits to computation , 1999, Nature.

[36]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[37]  P. Zoller,et al.  Preparation of entangled states by quantum Markov processes , 2008, 0803.1463.

[38]  S. Huelga,et al.  Quantum non-Markovianity: characterization, quantification and detection , 2014, Reports on progress in physics. Physical Society.

[39]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[40]  I. Sinayskiy,et al.  Arbitrary spin in a spin bath: Exact dynamics and approximation techniques , 2014, 1401.7575.

[41]  Mediated entanglement and correlations in a star network of interacting spins , 2002, quant-ph/0208114.