Quantitative ion probe analysis of glasses by empirical calibration methods

[1]  J. D. Fassett,et al.  Computerized image processing for evaluation of sampling error in ion microprobe analysis , 1978 .

[2]  L. E. Wangen,et al.  Determination of arsenic and gallium in standard materials by instrumental epithermal neutron activation analysis , 1978 .

[3]  G. Morrison,et al.  Quantitative ion probe measurement using matrix ion species ratios , 1978 .

[4]  G. Scilla,et al.  Sampling error in ion microprobe analysis , 1977 .

[5]  H. Werner,et al.  Test of a quantitative approach to secondary ion mass spectrometry on glass and silicate standards , 1977 .

[6]  James R. Brown,et al.  Calibration studies for quantitative x-ray photoelectron spectroscopy of ions , 1977 .

[7]  R. Braman,et al.  Separation and determination of nanogram amounts of inorganic arsenic and methylarsenic compounds. , 1977, Analytical chemistry.

[8]  T. Nedeltcheva,et al.  Rapid polarographic method for determining arsenic in steel. , 1976, Talanta.

[9]  H. Tamura,et al.  Surface Analysis of Insulating Materials by Means of an Ion Microprobe Analyzer , 1976 .

[10]  H. R. Brown,et al.  Inorganic interference study of automated arsenic and selenium determination with atomic absorption spectrometry , 1976 .

[11]  H. Werner,et al.  Charging of insulators by ion bombardment and its minimization for secondary ion mass spectrometry (SIMS) measurements , 1976 .

[12]  W. Riggs,et al.  X-ray photoelectron spectroscopy for trace metals determination by ion-exchange absorption from solution , 1975 .

[13]  G. Forsberg,et al.  Determination of arsenic by anodic stripping voltammetry and differential pulse anodic stripping voltammetry , 1975 .

[14]  K. Kan An Automated Method for the Determination of Arsenic and Antimony , 1973 .

[15]  R. Braman,et al.  Direct volatilization-spectral emission type detection system for nanogram amounts of arsenic and antimony , 1972 .

[16]  Y. Ueda,et al.  Sputtering Mass Spectrometer with Cesium Primay Ion Source , 1972 .

[17]  H. S. Satterlee,et al.  Ultramicrodetermination of Arsenic by Gutzeit Spot-Filtration under Vacuum. A Rapid Technique Employing Photometric Calibration and Permanent Photographic Standards , 1944 .

[18]  David H. Smith,et al.  A comparison of a theoretical model and sensitivity factor calculations for quantification of sims data , 1978 .

[19]  D. Briggs,et al.  Analysis of trace elements in water by ESCA , 1977 .

[20]  J. Jones,et al.  Sequential determination of arsenic, selenium, antimony, and tellurium in foods via rapid hydride evolution and atomic absorption spectrometry. , 1976, Analytical chemistry.

[21]  J. Drinkwater Atomic-absorption determination of bismuth in complex nickel-base alloys by generation of its covalent hydride , 1976 .

[22]  Homer D. Hagstrum,et al.  Photoelectron and Auger Spectroscopy , 1975 .

[23]  A. Townshend,et al.  Elimination of interferences in the determination of arsenic and antimony by hydride generation using molecular emission cavity analysis (MECA). , 1975, The Analyst.

[24]  A. Smith Interferences in the determination of elements that form volatile hydrides with sodium borohydride using atomic-absorption spectrophotometry and the argon-hydrogen flame , 1975 .

[25]  J. Brinen,et al.  Application of ESCA to analytical chemistry I. Electrochemical concentration of metals for trace quantitative analysis by ESCA , 1974 .

[26]  F. J. Schmidt,et al.  Sub Microgram Determination of Arsenic, Selenium, Antimony and Bismuth By Atomic Absorption Utilizing Sodium Borohydride Reduction , 1973 .

[27]  J. Brinen,et al.  Trace Analysis by ESCA-Electrochemical Measurements , 1972 .

[28]  C. F. Robinson,et al.  NEGATIVE-ION BOMBARDMENT OF INSULATORS TO ALLEVIATE SURFACE CHARGE-UP. , 1969 .

[29]  H. Brown,et al.  Argentimetric Procedure for Borohydride Determination , 1955 .

[30]  H. Brown,et al.  Sodium Borohydride, Its Hydrolysis and its Use as a Reducing Agent and in the Generation of Hydrogen1 , 1953 .