General models in min-max continous location: Theory and solution techniques

In this paper, a class of min-max continuous location problems is discussed. After giving a complete characterization of th stationary points, we propose a simple central and deep-cut ellipsoid algorithm to solve these problems for the quasiconvex case. Moreover, an elementary convergence proof of this algorithm and some computational results are presented.

[1]  Frank Plastria,et al.  Localization in single facility location , 1984 .

[2]  D. Varberg Convex Functions , 1973 .

[3]  R. D. Murphy,et al.  Iterative solution of nonlinear equations , 1994 .

[4]  Hans-Jakob Lüthi,et al.  On the Solution of Variational Inequalities by the Ellipsoid Method , 1985, Math. Oper. Res..

[5]  N. Z. Shor,et al.  Family of algorithms for solving convex programming problems , 1979 .

[6]  F. Plastria Lower subdifferentiable functions and their minimization by cutting planes , 1985 .

[7]  Wolfgang Berens,et al.  Estimating road distances by mathematical functions , 1985 .

[8]  Martin Grötschel,et al.  The Ellipsoid Method , 1993 .

[9]  Michael J. Todd,et al.  Feature Article - The Ellipsoid Method: A Survey , 1981, Oper. Res..

[10]  Frank Plastria,et al.  On destination optimality in asymmetric distance Fermat-Weber problems , 1993, Ann. Oper. Res..

[11]  Jean-Pierre Crouzeix Some differentiability properties of quasiconvex functions ℝn , 1981 .

[12]  J. B. G. Frenk,et al.  General models in min-max planar location: Checking optimality conditions , 1996 .

[13]  Sfindor KOMLOSI Some properties of nondifferentiable pseudoconvex functions , 1983, Math. Program..

[14]  Richard E. Wendell,et al.  Location Theory, Dominance, and Convexity , 1973, Oper. Res..

[15]  Shuzhong Zhang,et al.  A deep cut ellipsoid algorithm and quasiconvex programming , 1994 .

[16]  N. Z. Shor Utilization of the operation of space dilatation in the minimization of convex functions , 1972 .

[17]  W. Rudin Principles of mathematical analysis , 1964 .

[18]  B. N. Pshenichnyi Necessary Conditions for an Extremum , 1971 .

[19]  R. Love,et al.  Modelling Inter-city Road Distances by Mathematical Functions , 1972 .

[20]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[21]  Juan Enrique Martínez-Legaz,et al.  On lower subdifferentiable functions , 1988 .

[22]  Jean-Louis Goffin,et al.  Convergence Rates of the Ellipsoid Method on General Convex Functions , 1983, Math. Oper. Res..

[23]  James E. Ward,et al.  Technical Note - A New Norm for Measuring Distance Which Yields Linear Location Problems , 1980, Oper. Res..

[24]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[25]  M. Todd,et al.  The Ellipsoid Method: A Survey , 1980 .

[26]  James E. Ward,et al.  Using Block Norms for Location Modeling , 1985, Oper. Res..

[27]  J. B. G. Frenk,et al.  A deep cut ellipsoid algorithm for convex programming: Theory and applications , 1994, Math. Program..

[28]  Michael Kupferschmid,et al.  Using deep cuts in an ellipsoid algorithm for nonlinear programming , 1985 .

[29]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[30]  P. Loridan,et al.  Approximation of solutions for location problems , 1988 .