Identification of nonlinear Wiener-Hammerstein systems by a novel adaptive algorithm based on cost function framework.

This paper investigates parameter identification of nonlinear Wiener-Hammerstein systems by using filter gain and novel cost function. Taking into account the system information is corrupted by noise, the filter gain is exploited to extract the system data. By using several auxiliary filtered variables, an extended estimation error vector is developed. Then, based on the discount term of the extended estimation error and the penalty term on the initial estimate, a novel cost function is developed to obtain the optimal parameter adaptive law. Compared with the conventional cost function which is composed of the square sum of output error, the proposed algorithm based on the cost function of this paper can provide faster convergence rate and higher estimation accuracy. Furthermore, the convergence analysis of the proposed scheme indicates that the parameter estimation error can converge to zero. The effectiveness and practicality of the proposed scheme are validated through the simulation example and experiment on the turntable servo system.

[1]  Joel Goodman,et al.  A Log-Frequency Approach to the Identification of the Wiener–Hammerstein Model , 2009, IEEE Signal Processing Letters.

[2]  Txema Lopetegi,et al.  Chirping Techniques to Maximize the Power-Handling Capability of Harmonic Waveguide Low-Pass Filters , 2016, IEEE Transactions on Microwave Theory and Techniques.

[3]  Yves Rolain,et al.  Structure discrimination in block-oriented models using linear approximations: A theoretic framework , 2015, Autom..

[4]  Dakuo He,et al.  Recursive parameter estimation for Hammerstein-Wiener systems using modified EKF algorithm. , 2017, ISA transactions.

[5]  Hajime Ase,et al.  Linear approximation and identification of MIMO Wiener-Hammerstein systems , 2016, Autom..

[6]  Yonghong Tan,et al.  State estimation of a compound non-smooth sandwich system with backlash and dead zone , 2017 .

[7]  Jozef Vörös,et al.  Parameter identification of discontinuous hammerstein systems , 1997, Autom..

[8]  Keith J. Burnham,et al.  Parameter estimation of the fractional-order Hammerstein–Wiener model using simplified refined instrumental variable fractional-order continuous time , 2017 .

[9]  Graham C. Goodwin,et al.  Adaptive filtering prediction and control , 1984 .

[10]  Dong Jiang,et al.  Implementation and Evaluation of Online System Identification of Electromechanical Systems Using Adaptive Filters , 2016, IEEE Transactions on Industry Applications.

[11]  Brett Ninness,et al.  Generalised Hammerstein–Wiener system estimation and a benchmark application , 2012 .

[12]  B. Anderson,et al.  Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[13]  Tegoeh Tjahjowidodo,et al.  Multi-source micro-friction identification for a class of cable-driven robots with passive backbone , 2016 .

[14]  Fouad Giri,et al.  Hammerstein Systems Identification in Presence of Hard Nonlinearities of Preload and Dead-Zone Type , 2009, IEEE Transactions on Automatic Control.

[15]  X. R. Li,et al.  Performance Prediction of the Interacting Multiple Model Algorithm , 1992, 1992 American Control Conference.

[16]  Feng Ding,et al.  Novel data filtering based parameter identification for multiple-input multiple-output systems using the auxiliary model , 2016, Autom..

[17]  Maryam Dehghani,et al.  Identification of multivariable nonlinear systems in the presence of colored noises using iterative hierarchical least squares algorithm. , 2014, ISA transactions.

[18]  Jozef Vörös,et al.  Modeling and identification of systems with backlash , 2010, Autom..

[19]  Ruoyu Li,et al.  Recursive Identification of Sandwich Systems With Dead Zone and Application , 2009, IEEE Transactions on Control Systems Technology.

[20]  Jie Chen,et al.  Identifier-Based Adaptive Robust Control for Servomechanisms With Improved Transient Performance , 2010, IEEE Transactions on Industrial Electronics.

[21]  Tae-Hyoung Kim,et al.  Direct identification of generalized Prandtl-Ishlinskii model inversion for asymmetric hysteresis compensation. , 2017, ISA transactions.

[22]  Qi Li,et al.  Adaptive fuzzy PID composite control with hysteresis-band switching for line of sight stabilization servo system , 2011 .

[23]  Hajime Ase,et al.  A subspace-based identification of Wiener–Hammerstein benchmark model , 2015 .

[24]  Mirosław Pawlak,et al.  Hammerstein System Identification With the Nearest Neighbor Algorithm , 2017, IEEE Transactions on Information Theory.

[25]  Pradipta Kishore Dash,et al.  NARX model based nonlinear dynamic system identification using low complexity neural networks and robust H∞ filter , 2013, Appl. Soft Comput..

[26]  M. Arefi,et al.  A fast iterative recursive least squares algorithm for Wiener model identification of highly nonlinear systems. , 2017, ISA transactions.

[27]  Yu Guo,et al.  Adaptive Prescribed Performance Motion Control of Servo Mechanisms with Friction Compensation , 2014, IEEE Transactions on Industrial Electronics.

[28]  Johan Schoukens,et al.  Hammerstein-Wiener system estimator initialization , 2002, Autom..

[29]  L. Ljung Convergence analysis of parametric identification methods , 1978 .

[30]  Grzegorz Mzyk,et al.  Kernel-based identification of Wiener-Hammerstein system , 2017, Autom..

[31]  Yu Guo,et al.  Robust adaptive parameter estimation of sinusoidal signals , 2015, Autom..

[32]  Feng Ding,et al.  Auxiliary model-based least-squares identification methods for Hammerstein output-error systems , 2007, Syst. Control. Lett..

[33]  Jozef Vörös,et al.  Iterative algorithm for parameter identification of Hammerstein systems with two-segment nonlinearities , 1999, IEEE Trans. Autom. Control..

[34]  Steve McLaughlin,et al.  Analysis of stochastic gradient identification of Wiener-Hammerstein systems for nonlinearities with Hermite polynomial expansions , 2001, IEEE Trans. Signal Process..

[35]  Er-Wei Bai,et al.  Identification of a modified Wiener-Hammerstein system and its application in electrically stimulated paralyzed skeletal muscle modeling , 2009, Autom..

[36]  Yuanxin Wu,et al.  A Numerical-Integration Perspective on Gaussian Filters , 2006, IEEE Transactions on Signal Processing.

[37]  Han-Fu Chen,et al.  Recursive Identification of MIMO Wiener Systems , 2013, IEEE Transactions on Automatic Control.

[38]  Marcus Johnson,et al.  Composite adaptive control for Euler-Lagrange systems with additive disturbances , 2010, Autom..

[39]  E. Bai,et al.  Block Oriented Nonlinear System Identification , 2010 .

[40]  Per Mattsson,et al.  Convergence analysis for recursive Hammerstein identification , 2016, Autom..

[41]  Ruifeng Ding,et al.  Gradient-based parameter estimation for input nonlinear systems with ARMA noises based on the auxiliary model , 2013 .

[42]  Feng Ding,et al.  Adaptive filtering parameter estimation algorithms for Hammerstein nonlinear systems , 2016, Signal Process..

[43]  Xuemei Ren,et al.  Decomposition-based recursive least-squares parameter estimation algorithm for Wiener-Hammerstein systems with dead-zone nonlinearity , 2017, Int. J. Syst. Sci..

[44]  Yves Rolain,et al.  Identification of Wiener-Hammerstein systems by a nonparametric separation of the best linear approximation , 2014, Autom..

[45]  Johan Schoukens,et al.  Initial estimates of the linear subsystems of Wiener-Hammerstein models , 2012, Autom..

[46]  Xianku Zhang,et al.  Multi-innovation auto-constructed least squares identification for 4 DOF ship manoeuvring modelling with full-scale trial data. , 2015, ISA transactions.

[47]  Jing Na,et al.  Improving transient performance of adaptive control via a modified reference model and novel adaptation , 2017 .

[48]  Johan Schoukens,et al.  Structure Detection of Wiener-Hammerstein Systems With Process Noise , 2017, IEEE Trans. Instrum. Meas..

[49]  S. Sastry,et al.  Adaptive Control: Stability, Convergence and Robustness , 1989 .

[50]  Klaus Janschek,et al.  Recursive Identification of Micropositioning Stage Based on Sandwich Model With Hysteresis , 2017, IEEE Transactions on Control Systems Technology.

[51]  Johan Schoukens,et al.  Initial estimates for Wiener-Hammerstein models using phase-coupled multisines , 2015, Autom..