Optimizing circular ring arrays for forward- looking IVUS imaging

Forward-looking (FL) catheter-based imaging systems are highly desirable for guiding interventions in intra- vascular ultrasound (IVUS) applications. One of the main challenges of array-based FL-IVUS systems is the large channel count, which results in increased system complexity. Synthetic phased-array processing with a reduced firing count simplifies the front-end and, hence, can enable 3-D real-time imaging. Recently, we have investigated dual-ring arrays suitable for IVUS imaging, in which the two concentric circular arrays are used separately as transmit (Tx) and receive (Rx) arrays. In this study, we present different optimized array designs based on dual and single circular rings which are suitable for synthetic phased-array processing with a reduced number of firings. To obtain an optimal firing set that produces low side lobes in the wideband response, we use a simulated annealing algorithm. In the simulations, we use 1.2-mm-diameter array configurations with 64 Tx and 58 Rx elements, a center frequency of 20 MHz and fractional bandwidths of 50% and 80%. The results show that optimized dual-ring arrays provide 8 dB improvements in peak near side-lobe level with no widening in the main lobe width when compared with full and other sparse co-arrays.

[1]  G. Gurun,et al.  Single chip CMUT arrays with integrated CMOS electronics: Fabrication process development and experimental results , 2008, 2008 IEEE Ultrasonics Symposium.

[2]  S. Norton Synthetic aperture imaging with arrays of arbitrary shape--part II: The annular array. , 2002, IEEE transactions on ultrasonics, ferroelectrics, and frequency control.

[3]  Jaime Zahorian,et al.  Bias optimization of dual ring CMUT arrays for forward looking IVUS applications , 2010, 2010 IEEE International Ultrasonics Symposium.

[4]  Graham A Wright,et al.  Innovations in imaging for chronic total occlusions: a glimpse into the future of angiography's blind-spot. , 2008, European heart journal.

[5]  U. Tebbe,et al.  The management of chronic total coronary occlusions. , 2008, Minerva cardioangiologica.

[6]  G. R. Lockwood,et al.  Optimizing sparse two-dimensional transducer arrays using an effective aperture approach , 1994, 1994 Proceedings of IEEE Ultrasonics Symposium.

[7]  O. Oralkan,et al.  Forward-viewing CMUT arrays for medical imaging , 2004, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[8]  M. O'Donnell,et al.  Synthetic phased arrays for intraluminal imaging of coronary arteries , 1997, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[9]  P. Yock,et al.  Intravascular ultrasound. Looking below the surface of vascular disease. , 1990, Circulation.

[10]  M. O'Donnell,et al.  Efficient synthetic aperture imaging from a circular aperture with possible application to catheter-based imaging , 1992, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[11]  Sverre Holm Minimum sidelobe energy versus minimum peak sidelobe level for sparse array optimization , 1996 .

[12]  Gordon S. Kino,et al.  A theory for the radiation pattern of a narrow‐strip acoustic transducer , 1980 .

[13]  Butrus T. Khuri-Yakub,et al.  Minimally Redundant 2-D Array Designs for 3-D Medical Ultrasound Imaging , 2009, IEEE Transactions on Medical Imaging.

[14]  S.W. Smith,et al.  High-speed ultrasound volumetric imaging system. I. Transducer design and beam steering , 1991, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[15]  N. Bom,et al.  Early and recent intraluminal ultrasound devices , 2005, The International Journal of Cardiac Imaging.

[16]  S. Norton Synthetic aperture imaging with arrays of arbitrary shape. II. The annular array , 2002, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[17]  Sverre Holm,et al.  1D and 2D algorithmically optimized sparse arrays , 1997, 1997 IEEE Ultrasonics Symposium Proceedings. An International Symposium (Cat. No.97CH36118).

[18]  A. Trucco,et al.  A stochastic approach to optimizing the aperture and the number of elements of an aperiodic array , 1996, OCEANS 96 MTS/IEEE Conference Proceedings. The Coastal Ocean - Prospects for the 21st Century.

[19]  B S Hu,et al.  A forward-viewing intravascular ultrasound catheter suitable for intracoronary use. , 1997, Biomedical instrumentation & technology.

[20]  Michael J. Vonesh,et al.  Arterial Imaging With a New Forward‐Viewing Intravascular Ultrasound Catheter, II: Three‐Dimensional Reconstruction and Display of Data , 1994, Circulation.

[21]  M. Karaman,et al.  Annular-ring CMUT arrays for forward-looking IVUS: transducer characterization and imaging , 2006, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[22]  J.A. Johnson,et al.  Coherent-array imaging using phased subarrays. Part I: basic principles , 2005, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[23]  F.S. Foster,et al.  Optimizing the radiation pattern of sparse periodic two-dimensional arrays , 1996, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[24]  M. O’Donnell,et al.  Experimental studies on an efficient catheter array imaging system. , 1995, Ultrasonic imaging.

[25]  J. McLean,et al.  Low temperature fabrication of immersion capacitive micromachined ultrasonic transducers on silicon and dielectric substrates , 2004, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[26]  M. Karaman,et al.  5G-5 Dual-Annular-Ring CMUT Array for ForwardLooking IVUS Imaging , 2006, 2006 IEEE Ultrasonics Symposium.

[27]  A. Trucco,et al.  Thinning and weighting of large planar arrays by simulated annealing , 1999, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[28]  Michael J. Vonesh,et al.  Arterial Imaging With a New Forward‐Viewing Intravascular Ultrasound Catheter, I: Initial Studies , 1994, Circulation.

[29]  M. O'Donnell,et al.  Synthetic aperture imaging for small scale systems , 1995, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[30]  O. Oralkan,et al.  Capacitive micromachined ultrasonic transducers: fabrication technology , 2005, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[31]  G.R. Lockwood,et al.  Broad-bandwidth radiation patterns of sparse two-dimensional vernier arrays , 1997, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[32]  Andrea Massa,et al.  Planar antenna array design with a multi‐purpose GA‐based procedure , 2002 .

[33]  Toby Xu,et al.  CMUT-on-CMOS for forward-looking IVUS: Improved fabrication and real-time imaging , 2010, 2010 IEEE International Ultrasonics Symposium.

[34]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[35]  S. Norton Synthetic aperture imaging with arrays of arbitrary shape. Part I. General case , 2002, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[36]  O. Oralkan,et al.  3-D ultrasound imaging using a forward-looking CMUT ring array for intravascular/intracardiac applications , 2006, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[37]  Jeremy Aaron Johnson Coherent array imaging using phased subarrays , 2003 .

[38]  Mustafa Karaman,et al.  Co-array optimization of CMUT arrays for Forward-Looking IVUS , 2009, 2009 IEEE International Ultrasonics Symposium.

[39]  S. Holm,et al.  Properties of the beampattern of weight- and layout-optimized sparse arrays , 1997, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[40]  Antonius F. W. van der Steen,et al.  IVUS beyond the horizon. , 2006, EuroIntervention : journal of EuroPCR in collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology.

[41]  Sverre Holm,et al.  Weight- and Layout-Optimized Sparse Arrays , 1997 .

[42]  M. Karaman,et al.  P0-18 Forward-Looking IVUS Imaging Using a Dual-Annular Ring CMUT Array: Experimental Results , 2007, 2007 IEEE Ultrasonics Symposium Proceedings.

[43]  D.N. Stephens,et al.  Optimizing the beam pattern of a forward-viewing ring-annular ultrasound array for intravascular imaging , 2002, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.