A critical overview of definitions and determination techniques of the internal resistance using lithium-ion, lead-acid, nickel metal-hydride batteries and electrochemical double-layer capacitors as examples

[1]  J. Groot,et al.  On the complex ageing characteristics of high-power LiFePO4/graphite battery cells cycled with high charge and discharge currents , 2015 .

[2]  Yoshiyasu Saito,et al.  Heat generation behavior during charging and discharging of lithium-ion batteries after long-time storage , 2013 .

[3]  Christian Fleischer,et al.  On-line estimation of lithium-ion battery impedance parameters using a novel varied-parameters approach , 2013 .

[4]  F. Béguin,et al.  Supercapacitors : materials, systems, and applications , 2013 .

[5]  Dirk Uwe Sauer,et al.  Experimental investigation of the lithium-ion battery impedance characteristic at various conditions and aging states and its influence on the application , 2013 .

[6]  David A. J. Rand,et al.  Designing lead–acid batteries to meet energy and power requirements of future automobiles ☆ , 2012 .

[7]  T. Osaka,et al.  Ac impedance analysis of lithium ion battery under temperature control , 2012 .

[8]  C. Delacourt,et al.  Calendar aging of a graphite/LiFePO4 cell , 2012 .

[9]  Eckhard Karden,et al.  Dynamic charge acceptance of lead–acid batteries: Comparison of methods for conditioning and testing , 2012 .

[10]  Hyung-Man Cho,et al.  A study on time-dependent low temperature power performance of a lithium-ion battery , 2012 .

[11]  Doron Aurbach,et al.  Challenges in the development of advanced Li-ion batteries: a review , 2011 .

[12]  Kevin G. Gallagher,et al.  Simplified calculation of the area specific impedance for battery design , 2011 .

[13]  S. Schaeck,et al.  Lead-acid batteries in micro-hybrid applications. Part I. Selected key parameters , 2011 .

[14]  Yi-Shiun Chen,et al.  Performance comparisons and resistance modeling for multi-segment electrode designs of power-oriented lithium-ion batteries , 2010 .

[15]  Seung M. Oh,et al.  Characterization of equivalent series resistance of electric double-layer capacitor electrodes using transient analysis , 2010 .

[16]  Dirk Uwe Sauer,et al.  Cathode material influence on the power capability and utilizable capacity of next generation lithium-ion batteries , 2010 .

[17]  Michael Keller,et al.  Comparison of Several Methods for Determining the Internal Resistance of Lithium Ion Cells , 2010, Sensors.

[18]  J. Goodenough,et al.  Challenges for Rechargeable Li Batteries , 2010 .

[19]  Eckhard Karden,et al.  Simulation of the current distribution in lead-acid batteries to investigate the dynamic charge acceptance in flooded SLI batteries , 2009 .

[20]  Jeffrey R. Belt,et al.  Battery Test Manual For Plug-In Hybrid Electric Vehicles , 2008 .

[21]  Marc Thele,et al.  Development of a voltage-behavior model for NiMH batteries using an impedance-based modeling concept , 2008 .

[22]  Y. Inui,et al.  Simulation of temperature distribution in cylindrical and prismatic lithium ion secondary batteries , 2007 .

[23]  Henrik W. Bindner,et al.  Model prediction for ranking lead-acid batteries according to expected lifetime in renewable energy systems and autonomous power-supply systems , 2007 .

[24]  I. R. Hill,et al.  State-of-charge determination of lead-acid batteries using wire-wound coils , 2006 .

[25]  Arnaud Delaille,et al.  Study of the "coup de fouet" of lead-acid cells as a function of their state-of-charge and state-of-health , 2006 .

[26]  F. Huet,et al.  Investigation of the high-frequency resistance of a lead-acid battery , 2006 .

[27]  R. Kötz,et al.  Temperature behavior and impedance fundamentals of supercapacitors , 2006 .

[28]  Rik W. De Doncker,et al.  Impedance measurements on lead–acid batteries for state-of-charge, state-of-health and cranking capability prognosis in electric and hybrid electric vehicles , 2005 .

[29]  Marc Thele,et al.  Hybrid modeling of lead-acid batteries in frequency and time domain , 2005 .

[30]  M. Verbrugge,et al.  Adaptive state of charge algorithm for nickel metal hydride batteries including hysteresis phenomena , 2004 .

[31]  Eberhard Meissner,et al.  Battery Monitoring and Electrical Energy Management , 2003 .

[32]  K. Onda,et al.  Experimental Study on Heat Generation Behavior of Small Lithium-Ion Secondary Batteries , 2003 .

[33]  Rik W. De Doncker,et al.  Impedance-based non-linear dynamic battery modeling for automotive applications , 2003 .

[34]  B. Liaw,et al.  Reliable fast recharge of nickel metal hydride cells , 2002 .

[35]  Andrew C. Chu,et al.  Comparison of commercial supercapacitors and high-power lithium-ion batteries for power-assist applications in hybrid electric vehicles , 2002 .

[36]  P. Bernard,et al.  Life duration of Ni–MH cells for high power applications , 2002 .

[37]  Akihiro Taniguchi,et al.  Development of nickel/metal-hydride batteries for EVs and HEVs , 2001 .

[38]  Andreas Jossen,et al.  Methods for state-of-charge determination and their applications , 2001 .

[39]  R. Kötz,et al.  Principles and applications of electrochemical capacitors , 2000 .

[40]  Doron Aurbach,et al.  The Study of Surface Phenomena Related to Electrochemical Lithium Intercalation into Li x MO y Host Materials (M = Ni, Mn) , 2000 .

[41]  S. Rodrigues,et al.  AC impedance and state-of-charge analysis of a sealed lithium-ion rechargeable battery , 1999 .

[42]  B. Conway Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications , 1999 .

[43]  Hang Shi,et al.  Studies of activated carbons used in double-layer capacitors , 1998 .

[44]  Lu Zhang,et al.  AC impedance studies on sealed nickel metal hydride batteries over cycle life in analog and digital operations , 1998 .

[45]  F. Huet A review of impedance measurements for determination of the state-of-charge or state-of-health of secondary batteries , 1998 .

[46]  Chaoyang Wang,et al.  Numerical Modeling of Coupled Electrochemical and Transport Processes in Lead‐Acid Batteries , 1997 .

[47]  I. Sajfar,et al.  Sealed batteries in transient limiting distribution networks-methods of measuring their internal resistance , 1990, 12th International Conference on Telecommunications Energy.

[48]  W. Kappus,et al.  Homogeneous nucleation, growth and recrystallization of discharge products on electrodes , 1983 .

[49]  R. D. Levie,et al.  On porous electrodes in electrolyte solutions: I. Capacitance effects☆ , 1963 .

[50]  F MARTORELL,et al.  [Coup de fouet]. , 1955, Angiologia.

[51]  U. Sauer,et al.  Adaptive algorithms for monitoring of lithium ion batteries in electric vehicles , 2014 .

[52]  Juan Carlos Ramos,et al.  Thermal Modeling of Large Format Lithium-Ion Cells , 2013 .

[53]  M. Verbrugge,et al.  Similarities and Differences between Potential-Step and Impedance Methods for Determining Diffusion Coefficients of Lithium in Active Electrode Materials , 2013 .

[54]  Dirk Uwe Sauer,et al.  Detailed analysis of the self-discharge of supercapacitors , 2011 .

[55]  K. S. Champlin,et al.  Results of discrete frequency immittance spectroscopy (DFIS) measurements of lead acid batteries , 2001 .

[56]  E. Karden,et al.  A method for measurement and interpretation of impedance spectra for industrial batteries , 2000 .