Computing the Sobolev Regularity of Refinable Functions by the Arnoldi Method

The recent paper [Approx. Theory,(2000), pp. 185--225] provides a complete characterization of the L2-smoothness of a refinable function in terms of the spectrum of an associated operator. Based on this theory, we devise in this paper a numerically stable algorithm for calculating that smoothness parameter, employing the deflated Arnoldi method to this end. The algorithm is coded in Matlab, and details of the numerical implementation are discussed, together with some of the numerical experiments. The algorithm is designed to handle large masks, as well as masks of refinable functions with unstable shifts. This latter case is particularly important, in view of the recent developments in the area of wavelet frames.

[1]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[2]  Zuowei Shen,et al.  Compactly supported (bi)orthogonal wavelets generated by interpolatory refinable functions , 1999, Adv. Comput. Math..

[3]  I. Daubechies,et al.  Non-separable bidimensional wavelets bases. , 1993 .

[4]  S. L. Lee,et al.  Stability and orthonormality of multivariate refinable functions , 1997 .

[5]  W. Arnoldi The principle of minimized iterations in the solution of the matrix eigenvalue problem , 1951 .

[6]  Eugene BELOGAYy,et al.  ARBITRARILY SMOOTH ORTHOGONAL NONSEPARABLEWAVELETS IN , 1999 .

[7]  A. Ron,et al.  Tight compactly supported wavelet frames of arbitrarily high smoothness , 1998 .

[8]  Zuowei Shen,et al.  Construction of Compactly Supported Affine Frames in , 1998 .

[9]  Gerard L. G. Sleijpen,et al.  A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM J. Matrix Anal. Appl..

[10]  Zuowei Shen Affine systems in L 2 ( IR d ) : the analysis of the analysis operator , 1995 .

[11]  N. Dyn,et al.  A butterfly subdivision scheme for surface interpolation with tension control , 1990, TOGS.

[12]  R. Jia,et al.  Optimal Interpolatory Subdivision Schemes in Multidimensional Spaces , 1998 .

[13]  Amos Ron Smooth refinable functions provide good approximation orders , 1997 .

[14]  Zuowei Shen,et al.  Multidimensional Interpolatory Subdivision Schemes , 1997 .

[15]  Yang Wang,et al.  Arbitrarily smooth orthogonal nonseparable wavelets in R 2 , 1999 .

[16]  Zuowei Shen,et al.  Compactly supported tight affine spline frames in L2(Rd) , 1998, Math. Comput..

[17]  Zuowei Shen,et al.  Construction of compactly supported biorthogonal wavelets , 1999 .

[18]  Gerard L. G. Sleijpen,et al.  A generalized Jacobi-Davidson iteration method for linear eigenvalue problems , 1998 .

[19]  S. L. Lee,et al.  Convergence of multidimensional cascade algorithm , 1998 .

[20]  D. Sorensen Numerical methods for large eigenvalue problems , 2002, Acta Numerica.

[21]  A. Cohen,et al.  Compactly supported bidimensional wavelet bases with hexagonal symmetry , 1993 .

[22]  R. DeVore,et al.  Approximation from shift-invariant subspaces of ₂(^{}) , 1994 .

[23]  L. Villemoes Wavelet analysis of refinement equations , 1994 .

[24]  K. Lau,et al.  On some sharp regularity estimations of L 2 -scaling functions , 1996 .

[25]  D. Sorensen,et al.  A Truncated RQ Iteration for Large Scale Eigenvalue Calculations , 1998 .

[26]  Gerard L. G. Sleijpen,et al.  A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM Rev..

[27]  Ming-Jun Lai,et al.  Construction of Bivariate Compactly Supported Biorthogonal Box Spline Wavelets with Arbitrarily High Regularities , 1999 .

[28]  T. Eirola Sobolev characterization of solutions of dilation equations , 1992 .

[29]  Zuowei Shen,et al.  Multivariate Compactly Supported Fundamental Refinable Functions, Duals, and Biorthogonal Wavelets , 1999 .

[30]  A. Cohen Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 61, I. Daubechies, SIAM, 1992, xix + 357 pp. , 1994 .

[31]  Jelena Kovacevic,et al.  Wavelet families of increasing order in arbitrary dimensions , 2000, IEEE Trans. Image Process..

[32]  A. Cohen,et al.  Regularity of Multivariate Refinable Functions , 1999 .

[33]  A. Ron,et al.  Affine Systems inL2(Rd): The Analysis of the Analysis Operator , 1997 .

[34]  R. Jia Characterization of Smoothness of Multivariate Refinable Functions in Sobolev Spaces , 1999 .

[35]  Serge Dubuc,et al.  Multidimensional Iterative Interpolation , 1991, Canadian Journal of Mathematics.

[36]  Gilles Deslauriers,et al.  Symmetric iterative interpolation processes , 1989 .

[37]  Danny C. Sorensen,et al.  Deflation Techniques for an Implicitly Restarted Arnoldi Iteration , 1996, SIAM J. Matrix Anal. Appl..

[38]  Zuowei Shen,et al.  Analysis and Approximation Theory Seminar University of Alberta Construction of Compactly Supported Biorthogonal Wavelets in L 2 (ir S ) , 1997 .

[39]  A. Ron,et al.  The Sobolev Regularity of Refinable Functions , 2000 .

[40]  R. DeVore,et al.  Approximation from Shift-Invariant Subspaces of L 2 (ℝ d ) , 1994 .