Improvement of Multi-GNSS Precise Point Positioning Performances with Real Meteorological Data

Ke Su1,2 and Shuanggen Jin1,3 1(Shanghai Key Laboratory of Space Navigation and Positioning Technology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, China) 2(University of Chinese Academy of Sciences, Beijing 100049, China) 3(School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China) (E-mail: sgjin@shao.ac.cn)

[1]  Yao Yi A new global zenith tropospheric delay model GZTD , 2013 .

[2]  H H Schmid,et al.  The Use of Artificial Satellites for Geodesy. , 1964, Science.

[3]  Zhu Wen-yao,et al.  Real-time monitoring and prediction of ionospheric electron content by means of GPS , 2004 .

[4]  Yunbin Yuan,et al.  An evaluation of real‐time troposphere estimation based on GNSS Precise Point Positioning , 2017 .

[5]  Oliver Montenbruck,et al.  The IGS MGEX Experiment as a Milestone for a Comprehensive Multi-GNSS Service , 2013 .

[6]  H. S. Hopfield Two- quartic tropospheric refractivity profile for correcting satellite data , 1969 .

[7]  Peter Steigenberger,et al.  Comparison of GMF/GPT with VMF1/ECMWF and implications for atmospheric loading , 2009 .

[8]  Shuanggen Jin,et al.  Characterization of diurnal cycles in ZTD from a decade of global GPS observations , 2009 .

[9]  T. Nilsson,et al.  GPT2: Empirical slant delay model for radio space geodetic techniques , 2013, Geophysical research letters.

[10]  Shuanggen Jin,et al.  Integrated Water Vapor Field and Multiscale Variations over China from GPS Measurements , 2008 .

[11]  Shuanggen Jin,et al.  Effects of physical correlations on long-distance GPS positioning and zenith tropospheric delay estimates , 2010 .

[12]  Kamil Kazmierski,et al.  Optimum stochastic modeling for GNSS tropospheric delay estimation in real-time , 2017, GPS Solutions.

[13]  K. Trenberth,et al.  Trends in the Southern Hemisphere Tropospheric Circulation , 1981 .

[14]  Shuanggen Jin,et al.  Analysis of the Refined CRUST1.0 Crustal Model and its Gravity Field , 2014, Surveys in Geophysics.

[15]  François Lahaye,et al.  Precise Point Positioning , 2017 .

[16]  K. Trenberth Seasonal variations in global sea level pressure and the total mass of the atmosphere , 1981 .

[17]  Shuanggen Jin,et al.  Lower atmospheric anomalies following the 2008 Wenchuan Earthquake observed by GPS measurements , 2011 .

[18]  Karina Wilgan,et al.  Near-real-time regional troposphere models for the GNSS precise point positioning technique , 2013 .

[19]  Richard B. Langley,et al.  UNB3m_pack: a neutral atmosphere delay package for radiometric space techniques , 2008 .

[20]  Yang Gao,et al.  Precise point positioning with quad-constellations: GPS, BeiDou, GLONASS and Galileo , 2015 .

[21]  Pil-Ho Park,et al.  Strain accumulation in South Korea inferred from GPS measurements , 2006 .

[22]  R. Langley,et al.  UNB Neutral Atmosphere Models : Development and Performance , 2006 .

[23]  Boonsap Witchayangkoon,et al.  Elements of GPS precise point positioning , 2000 .

[24]  J. Zumberge,et al.  Precise point positioning for the efficient and robust analysis of GPS data from large networks , 1997 .

[25]  H. Schuh,et al.  Short Note: A global model of pressure and temperature for geodetic applications , 2007 .

[26]  J. Saastamoinen Atmospheric Correction for the Troposphere and Stratosphere in Radio Ranging Satellites , 2013 .

[27]  Jan Kouba,et al.  Testing of global pressure/temperature (GPT) model and global mapping function (GMF) in GPS analyses , 2009 .

[28]  Ying Li,et al.  Assessment of Three Tropospheric Delay Models (IGGtrop, EGNOS and UNB3m) Based on Precise Point Positioning in the Chinese Region , 2016, Sensors.