On the Future of Argo: A Global, Full-Depth, Multi-Disciplinary Array

The Argo Program has been implemented and sustained for almost two decades, as a global array of about 4000 profiling floats. Argo provides continuous observations of ocean temperature and salinity versus pressure, from the sea surface to 2000 dbar. The successful installation of the Argo array and its innovative data management system arose opportunistically from the combination of great scientific need and technological innovation. Through the data system, Argo provides fundamental physical observations with broad societally-valuable applications, built on the cost-efficient and robust technologies of autonomous profiling floats. Following recent advances in platform and sensor technologies, even greater opportunity exists now than 20 years ago to (i) improve Argo’s global coverage and value beyond the original design, (ii) extend Argo to span the full ocean depth, (iii) add biogeochemical sensors for improved understanding of oceanic cycles of carbon, nutrients, and ecosystems, and (iv) consider experimental sensors that might be included in the future, for example to document the spatial and temporal patterns of ocean mixing. For Core Argo and each of these enhancements, the past, present, and future progression along a path from experimental deployments to regional pilot arrays to global implementation is described. The objective is to create a fully global, top-to-bottom, dynamically complete, and multidisciplinary Argo Program that will integrate seamlessly with satellite and with other in situ elements of the Global Ocean Observing System (Legler et al., 2015). The integrated system will deliver operational reanalysis and forecasting capability, and assessment of the state and variability of the climate system with respect to physical, biogeochemical, and ecosystems parameters. It will enable basic research of unprecedented breadth and magnitude, and a wealth of ocean-education and outreach opportunities.

Thierry Carval | Virginie Thierry | Guillaume Maze | Satya Prakash | Haili Wang | Sylvie Pouliquen | Kjell Arne Mork | Hervé Claustre | Catherine Schmechtig | Brian King | Megan Scanderbeg | Steven Jayne | Claudia Schmid | Toste Tanhua | Are Olsen | Katja Fennel | Andrew Watson | Henry C. Bittig | Arne Körtzinger | Cara Wilson | Markus Jochum | Gregory C. Johnson | Jianping Xu | Ilker Fer | Andreas Sterl | Emmanuel Boss | Tetsuichi Fujiki | Peter Oke | Lynne Talley | Dean Roemmich | Matthew H. Alford | Kenneth Johnson | James Moum | W. Brechner Owens | Sarah Purkey | Toshio Suga | Susan Wijffels | Nathalie Zilberman | Dorothee Bakker | Molly Baringer | Mathieu Belbeoch | Paulo Calil | Fiona Carse | Fei Chai | Diarmuid Ó. Conchubhair | Fabrizio d’Ortenzio | Giorgio Dall’Olmo | Damien Desbruyeres | Raffaele Ferrari | Gael Forget | Howard Freeland | Marion Gehlen | Blair Greenan | Robert Hallberg | Toshiyuki Hibiya | Shigeki Hosoda | KiRyong Kang | Nicolas Kolodziejczyk | Pierre-Yves Le Traon | Yueng-Djern Lenn | Tamaryn Morris | Takeyoshi Nagai | Jonathan Nash | Alberto Naveira Garabato | Rama Rao Pattabhi | Stephen Riser | Emily Shroyer | Philip Sutton | Sandy Thomalla | John Toole | Ariel Troisi | Thomas W. Trull | Jon Turton | Pedro Joaquin Velez-Belchi | Waldemar Walczowski | Rik Wanninkhof | Amy F. Waterhouse | Stephanie Waterman | Annie P. S. Wong | Ichiro Yasuda | A. Sterl | E. Boss | S. Riser | L. Talley | J. Toole | R. Ferrari | R. Hallberg | K. Johnson | F. Chai | F. D’Ortenzio | H. Claustre | K. Fennel | M. Gehlen | S. Jayne | P. Oke | G. Dall’Olmo | P. Calil | G. Johnson | S. Prakash | M. Jochum | I. Fer | W. Owens | P. L. Traon | Cara Wilson | D. Roemmich | C. Schmid | J. Nash | E. Shroyer | B. King | S. Purkey | R. Wanninkhof | S. Wijffels | H. Freeland | A. Troisi | M. Belbéoch | Jianping Xu | S. Pouliquen | G. Maze | T. Suga | P. Sutton | K. A. Mork | P. Vélez-Belchí | J. Turton | M. Baringer | T. Trull | D. Bakker | A. Körtzinger | A. Olsen | M. Alford | I. Yasuda | C. Schmechtig | A. Waterhouse | J. Moum | T. Tanhua | T. Hibiya | S. Waterman | N. Zilberman | T. Nagai | T. Carval | R. Pattabhi | S. Thomalla | Haili Wang | G. Forget | N. Kolodziejczyk | V. Thierry | S. Hosoda | A. N. Garabato | D. Desbruyères | F. Carse | Y. Lenn | A. Wong | M. Scanderbeg | B. Greenan | K. Kang | W. Walczowski | T. Fujiki | Tamaryn Morris | H. Bittig | D. Ó. Conchubhair | A. Watson | T. Morris | P. Vélez‐Belchí | Annie Wong

[1]  C. Domingues,et al.  More Than 50 Years of Successful Continuous Temperature Section Measurements by the Global Expendable Bathythermograph Network, Its Integrability, Societal Benefits, and Future , 2019, Front. Mar. Sci..

[2]  Ashwanth Srinivasan,et al.  On the modeling of the 2010 Gulf of Mexico Oil Spill , 2011 .

[3]  L. Talley,et al.  Spatial and temporal variability of global ocean mixing inferred from Argo profiles , 2012 .

[4]  J. Nash,et al.  Sea surface cooling at the Equator by subsurface mixing in tropical instability waves , 2009 .

[5]  Gregory C. Johnson,et al.  Delayed-Mode Calibration of Autonomous CTD Profiling Float Salinity Data by θ–S Climatology* , 2003 .

[6]  J. Moum,et al.  Comparison of Thermal Variance Dissipation Rates from Moored and Profiling Instruments at the Equator , 2012 .

[7]  Stephen C. Riser,et al.  Observations of pigment and particle distributions in the western North Atlantic from an autonomous float and ocean color satellite , 2008 .

[8]  Xin‐Zhong Liang,et al.  On the observability of turbulent transport rates by Argo: supporting evidence from an inversion experiment , 2015 .

[9]  E. Boss,et al.  Particulate concentration and seasonal dynamics in the mesopelagic ocean based on the backscattering coefficient measured with Biogeochemical‐Argo floats , 2017 .

[10]  Ricardo M Letelier,et al.  Autonomous observations of in vivo fluorescence and particle backscatteringin an oceanic oxygen minimum zone. , 2009, Optics express.

[11]  D. J. Leaa,et al.  Demonstrating the complementarity of observations in an operational ocean forecasting system , 2013 .

[12]  Masao Ishii,et al.  The Global Ocean Data Analysis Project version 2 (GLODAPv2) – an internally consistent data product for the world ocean , 2016 .

[13]  D. Olbers,et al.  Evaluating the Global Internal Wave Model IDEMIX Using Finestructure Methods , 2017 .

[14]  I. Yasuda,et al.  Comparison of Turbulence Intensity from CTD-Attached and Free-Fall Microstructure Profilers , 2017 .

[15]  Stephen C. Riser,et al.  Biogeochemical sensor performance in the SOCCOM profiling float array , 2017 .

[16]  E. Boss,et al.  Revisiting Ocean Color algorithms for chlorophyll a and particulate organic carbon in the Southern Ocean using biogeochemical floats , 2017 .

[17]  David M. Karl,et al.  Nitrate supply from deep to near-surface waters of the North Pacific subtropical gyre , 2010, Nature.

[18]  D. Holzworth,et al.  Re-inventing model-based decision support with Australian dryland farmers. 4. Yield Prophet® helps farmers monitor and manage crops in a variable climate. , 2009 .

[19]  Serge Le Reste,et al.  Observing mixed layer depth, nitrate and chlorophyll concentrations in the northwestern Mediterranean: A combined satellite and NO3 profiling floats experiment , 2014 .

[20]  Stephen G. Penny,et al.  Observational Needs for Improving Ocean and Coupled Reanalysis, S2S Prediction, and Decadal Prediction , 2019, Front. Mar. Sci..

[21]  Martin Edwards,et al.  An Integrated All-Atlantic Ocean Observing System in 2030 , 2019, Front. Mar. Sci..

[22]  Gregory C. Johnson,et al.  Warming of Global Abyssal and Deep Southern Ocean Waters between the 1990s and 2000s: Contributions to Global Heat and Sea Level Rise Budgets* , 2010 .

[23]  T. Nagai,et al.  Evidence of enhanced double‐diffusive convection below the main stream of the Kuroshio Extension , 2015 .

[24]  P. L. Traon,et al.  A large-scale view of oceanic variability from 2007 to 2015 in the global high resolution monitoring and forecasting system at Mercator Océan , 2018, Journal of Marine Systems.

[25]  A. Körtzinger,et al.  The Ocean Takes a Deep Breath , 2004, Science.

[26]  P. Poli,et al.  The Joint IOC (of UNESCO) and WMO Collaborative Effort for Met-Ocean Services , 2019, Front. Mar. Sci..

[27]  Atul K. Jain,et al.  Global Carbon Budget 2018 , 2014, Earth System Science Data.

[28]  F. Doblas-Reyes,et al.  Sources of skill in near-term climate prediction: generating initial conditions , 2016, Climate Dynamics.

[29]  Russ E. Davis,et al.  Robotic Observations of Dust Storm Enhancement of Carbon Biomass in the North Pacific , 2002, Science.

[30]  A. Lucas,et al.  Adrift Upon a Salinity-Stratified Sea: A View of Upper-Ocean Processes in the Bay of Bengal During the Southwest Monsoon , 2016 .

[31]  M. Mazloff,et al.  A data assimilating model for estimating Southern Ocean biogeochemistry , 2017 .

[32]  Patrick Heimbach,et al.  Observing System Evaluation Based on Ocean Data Assimilation and Prediction Systems: On-Going Challenges and a Future Vision for Designing and Supporting Ocean Observational Networks , 2019, Front. Mar. Sci..

[33]  Emlyn Jones,et al.  The search for MH370 and ocean surface drift - Part II , 2017 .

[34]  Frank O. Bryan,et al.  The Impact of Oceanic Near-Inertial Waves on Climate , 2013 .

[35]  Gregory C. Johnson,et al.  Antarctic Bottom Water warming and freshening: Contributions to sea level rise, ocean freshwater bud , 2013 .

[36]  Nicolas Gruber,et al.  Observing Biogeochemical Cycles at Global Scales With Profiling Floats and Gliders Prospects for a Global Array , 2009 .

[37]  Fabrizio D'Ortenzio,et al.  Recommendations for obtaining unbiased chlorophyll estimates from in situ chlorophyll fluorometers: A global analysis of WET Labs ECO sensors , 2017 .

[38]  Andrew T. Jessup,et al.  Regional Rainfall Measurements Using the Passive Aquatic Listener During the SPURS Field Campaign , 2015 .

[39]  P. Oke,et al.  Impact of Argo, SST, and altimeter data on an eddy‐resolving ocean reanalysis , 2007 .

[40]  Henry C. Bittig,et al.  An Alternative to Static Climatologies: Robust Estimation of Open Ocean CO2 Variables and Nutrient Concentrations From T, S, and O2 Data Using Bayesian Neural Networks , 2018, Front. Mar. Sci..

[41]  B. Howe,et al.  Moored observations of episodic abyssal flow and mixing at station ALOHA , 2011 .

[42]  Gregory C. Johnson,et al.  Quantifying Antarctic Bottom Water and North Atlantic Deep Water volumes , 2008 .

[43]  T. Osborn,et al.  Estimates of the Local Rate of Vertical Diffusion from Dissipation Measurements , 1980 .

[44]  W. Brechner Owens,et al.  An improved calibration method for the drift of the conductivity sensor on autonomous CTD profiling floats by θ–S climatology , 2009 .

[45]  Vincent Dutreuil,et al.  “Deep-Arvor”: A New Profiling Float to Extend the Argo Observations Down to 4000-m Depth , 2016 .

[46]  Denis Gilbert,et al.  Oxygen Saturation Surrounding Deep Water Formation Events in the Labrador Sea From Argo‐O2 Data , 2018 .

[47]  P. Oke,et al.  Towards a dynamically balanced eddy-resolving ocean reanalysis: BRAN3 , 2013 .

[48]  M. Balmaseda,et al.  Ocean heat content variability in an ensemble of twentieth century ocean reanalyses , 2017, Climate Dynamics.

[49]  S. Riser,et al.  Autonomous Biogeochemical Floats Detect Significant Carbon Dioxide Outgassing in the High‐Latitude Southern Ocean , 2018, Geophysical Research Letters.

[50]  Gustavo Goni,et al.  The current status of the real-time in situ Global Ocean Observing System for operational oceanography , 2015 .

[51]  Torill Hamre,et al.  A Framework for the Development, Design and Implementation of a Sustained Arctic Ocean Observing System , 2019, Front. Mar. Sci..

[52]  Catherine Lagadec,et al.  Improvement of bias detection in Argo float conductivity sensors and its application in the North Atlantic , 2016 .

[53]  A. Kummel,et al.  Solid State Sensor for Simultaneous Measurement of Total Alkalinity and pH of Seawater. , 2017, ACS sensors.

[54]  Gregory C. Johnson,et al.  Informing Deep Argo Array Design Using Argo and Full-Depth Hydrographic Section Data* , 2015 .

[55]  Hervé Claustre,et al.  Bio-optical profiling floats as new observational tools for biogeochemical and ecosystem studies: Potential synergies with ocean color remote sensing , 2010 .

[56]  K. Polzin,et al.  Finescale Parameterizations of Turbulent Dissipation , 1995 .

[57]  Gustavo Goni,et al.  Integrating the ocean observing system: mobile platforms , 2010 .

[58]  F. D’Ortenzio,et al.  A neural network‐based method for merging ocean color and Argo data to extend surface bio‐optical properties to depth: Retrieval of the particulate backscattering coefficient , 2016, Journal of Geophysical Research: Oceans.

[59]  P. Oke,et al.  Demonstrating the complementarity of observations in an operational ocean forecasting system , 2014 .

[60]  Richard C. Thompson,et al.  Toward the Integrated Marine Debris Observing System , 2019, Front. Mar. Sci..

[61]  A. Sterl,et al.  Fifteen years of ocean observations with the global Argo array , 2016 .

[62]  Andrew J. Watson,et al.  Evidence for slow mixing across the pycnocline from an open-ocean tracer-release experiment , 1993, Nature.

[63]  Emlyn Jones,et al.  The search for MH370 and ocean surface drift , 2016 .

[64]  Verena Hormann,et al.  Changes in the Ventilation of the Oxygen Minimum Zone of the Tropical North Atlantic , 2010 .

[65]  D. Olbers,et al.  A Global Model for the Diapycnal Diffusivity Induced by Internal Gravity Waves , 2013 .

[66]  S. Riser,et al.  Profiling Float Observations of the Upper Ocean under Sea Ice off the Wilkes Land Coast of Antarctica , 2010 .

[67]  Christoph Waldmann,et al.  More Integrated and More Sustainable Atlantic Ocean Observing (AtlantOS) , 2015 .

[68]  Norman G. Loeb,et al.  Improving estimates of Earth's energy imbalance , 2016 .

[69]  F. Roquet,et al.  Getting to the bottom of the ocean , 2016 .

[70]  Alison R. Gray,et al.  Observing System Simulation Experiments for an array of autonomous biogeochemical profiling floats in the Southern Ocean , 2017 .

[71]  Stephen C. Riser,et al.  Net production of oxygen in the subtropical ocean , 2008, Nature.

[72]  G. Danabasoglu,et al.  Climate Process Team on Internal Wave-Driven Ocean Mixing. , 2017, Bulletin of the American Meteorological Society.

[73]  E. Dombrowsky,et al.  An introduction to GODAE OceanView , 2015 .

[74]  David A. Smeed,et al.  The North Atlantic Ocean Is in a State of Reduced Overturning , 2018 .

[75]  Carol A. Stepien,et al.  Global Observational Needs and Resources for Marine Biodiversity , 2019, Front. Mar. Sci..

[76]  Dana D. Swift,et al.  Net community production at Ocean Station Papa observed with nitrate and oxygen sensors on profiling floats , 2016 .

[77]  uSiNG Godae SyStEmS Observing system evaluations using GODAE systems , 2009 .

[78]  R. Hallberg,et al.  Climatic Impacts of Parameterized Local and Remote Tidal Mixing , 2016 .

[79]  D. Marshall,et al.  A Conceptual Model of Ocean Heat Uptake under Climate Change , 2014 .

[80]  P. Strutton,et al.  Evaluating Southern Ocean Carbon Eddy‐Pump From Biogeochemical‐Argo Floats , 2018 .

[81]  I. Yasuda,et al.  Turbulence Estimation Using Fast-Response Thermistors Attached to a Free-Fall Vertical Microstructure Profiler , 2016 .

[82]  Dake Chen,et al.  Tropical Pacific Observing System , 2019, Front. Mar. Sci..

[83]  J. Church,et al.  Ocean temperatures chronicle the ongoing warming of Earth , 2016 .

[84]  Jae Hak Lee,et al.  The Global Ocean Ship-Based Hydrographic Investigations Program (GO-SHIP): A Platform for Integrated Multidisciplinary Ocean Science , 2019, Front. Mar. Sci..

[85]  Jacqueline Boutin,et al.  A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT) , 2016 .

[86]  Dean Roemmich,et al.  The 2004-2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program , 2009 .

[87]  K. Assmann,et al.  Delivering Sustained, Coordinated, and Integrated Observations of the Southern Ocean for Global Impact , 2019, Front. Mar. Sci..

[88]  Patrick Heimbach,et al.  Overturning in the Subpolar North Atlantic Program: A New International Ocean Observing System , 2017 .

[89]  John Gould,et al.  Argo: The Challenge of Continuing 10 Years of Progress [In: Special Issue on the Revolution of Global Ocean Forecasting - GODAE: 10 Years of Achievement] , 2009 .

[90]  Lijing Cheng,et al.  Measuring Global Ocean Heat Content to Estimate the Earth Energy Imbalance , 2019, Front. Mar. Sci..

[91]  Taiyo Kobayashi,et al.  Importance of Reference Dataset Improvements for Argo Delayed-Mode Quality Control , 2005 .

[92]  Craig M. Lee,et al.  A Sustained Ocean Observing System in the Indian Ocean for Climate Related Scientific Knowledge and Societal Needs , 2019, Front. Mar. Sci..

[93]  R. Ferrari,et al.  Finescale Structure of the T–S Relation in the Eastern North Atlantic , 2005 .

[94]  Jonathan D. Nash,et al.  Mixing Measurements on an Equatorial Ocean Mooring , 2009 .

[95]  S. Riser,et al.  Profiling float‐based observations of net respiration beneath the mixed layer , 2016 .

[96]  L. Talley,et al.  Estimating the Mean Diapycnal Mixing Using a Finescale Strain Parameterization , 2015 .

[97]  D. Roemmich Ocean Heat Content , 2011 .

[98]  H. Claustre,et al.  Substantial energy input to the mesopelagic ecosystem from the seasonal mixed-layer pump , 2016, Nature geoscience.

[99]  Shigeki Hosoda,et al.  A monthly mean dataset of global oceanic temperature and salinity derived from Argo float observations , 2008 .

[100]  G. Dall’Olmo,et al.  Carbon export by small particles in the Norwegian Sea , 2014 .

[101]  G. Johnson,et al.  Deep and abyssal ocean warming from 35 years of repeat hydrography , 2016 .

[102]  M. Grégoire,et al.  Black Sea Observing System , 2019, Frontiers in Marine Science.

[103]  Julie Thomas,et al.  Evolving and Sustaining Ocean Best Practices and Standards for the Next Decade , 2019, Front. Mar. Sci..

[104]  Stephen C. Riser,et al.  The Argo Program : present and future , 2017 .

[105]  D. Chambers,et al.  Relative contributions of ocean mass and deep steric changes to sea level rise between 1993 and 2013 , 2014 .

[106]  S. Riser,et al.  Calculating surface ocean pCO2 from biogeochemical Argo floats equipped with pH: An uncertainty analysis , 2017 .

[107]  R. Davis,et al.  Observations of temperature microstructure in NATRE , 1995 .

[108]  M. Mcphaden,et al.  Seasonal sea surface cooling in the equatorial Pacific cold tongue controlled by ocean mixing , 2013, Nature.

[109]  Olaf Boebel,et al.  A Profiling Float’s Sense of Ice , 2007 .

[110]  J. Moum,et al.  The Role of Turbulence in Redistributing Upper-Ocean Heat, Freshwater, and Momentum in Response to the MJO in the Equatorial Indian Ocean , 2017 .

[111]  D. Gilbert,et al.  Oxycline variability in the central Arabian Sea: An Argo-oxygen study , 2012 .

[112]  Carl Wunsch,et al.  Bidecadal Thermal Changes in the Abyssal Ocean , 2014 .

[113]  Fabienne Gaillard,et al.  In Situ-Based Reanalysis of the Global Ocean Temperature and Salinity with ISAS: Variability of the Heat Content and Steric Height , 2016 .

[114]  Diego A. Sorrentino,et al.  Validation of Ocean Color Remote Sensing Reflectance Using Autonomous Floats , 2016 .

[115]  Edmo Campos,et al.  Characteristics and causes of Deep Western Boundary Current transport variability at 34.5° S during 2009–2014 , 2016 .

[116]  Sidharth Misra,et al.  Satellite Salinity Observing System: Recent Discoveries and the Way Forward , 2019, Front. Mar. Sci..

[117]  R. Ferrari,et al.  A microscale view of mixing and overturning across the Antarctic Circumpolar Current , 2014 .

[118]  Alexander Forryan,et al.  Suppression of Internal Wave Breaking in the Antarctic Circumpolar Current near Topography , 2014 .

[119]  Matt A. King,et al.  The increasing rate of global mean sea-level rise during 1993–2014 , 2017 .

[120]  H. Charnock Oceanic Fine Structure , 1972, Nature.

[121]  Craig M. Lee,et al.  Global Perspectives on Observing Ocean Boundary Current Systems , 2019, Front. Mar. Sci..

[122]  B. Tilbrook,et al.  Ocean productivity south of Australia during spring and summer , 2016 .

[123]  A. Storto,et al.  The Tropical Atlantic Observing System , 2019, Front. Mar. Sci..

[124]  H. Bryden,et al.  Slowing of the Atlantic meridional overturning circulation at 25° N , 2005, Nature.

[125]  E. Jewett,et al.  Building the Knowledge-to-Action Pipeline in North America: Connecting Ocean Acidification Research and Actionable Decision Support , 2019, Front. Mar. Sci..

[126]  Robert Pinkel,et al.  Global Patterns of Diapycnal Mixing from Measurements of the Turbulent Dissipation Rate , 2014 .

[127]  J. Farrar,et al.  Modification of Upper-Ocean Temperature Structure by Subsurface Mixing in the Presence of Strong Salinity Stratification , 2016 .

[128]  M. Balmaseda,et al.  Observing system evaluations using GODAE systems , 2009 .

[129]  W. Paul Menzel,et al.  State of the Climate in 2016 , 2017 .

[130]  K. Hanawa,et al.  Biogeochemical evidence of large diapycnal diffusivity associated with the subtropical mode water of the North Pacific , 2011 .

[131]  Guimei Liu,et al.  Synergies in Operational Oceanography: The Intrinsic Need for Sustained Ocean Observations , 2019, Front. Mar. Sci..

[132]  Stefano Vignudelli,et al.  Towards Comprehensive Observing and Modeling Systems for Monitoring and Predicting Regional to Coastal Sea Level , 2019, Front. Mar. Sci..

[133]  J. Moum,et al.  An Efficient Scheme for Onboard Reduction of Moored χpod Data , 2017 .

[134]  Doug M. Smith,et al.  Initialized decadal predictions of the rapid warming of the North Atlantic Ocean in the mid 1990s , 2012 .

[135]  S. Bushinsky,et al.  Marine biological production from in situ oxygen measurements on a profiling float in the subarctic Pacific Ocean , 2015 .

[136]  Bernard E. Stewart,et al.  Bio-Optical Sensors on Argo Floats , 2011 .

[137]  J. Sarmiento,et al.  Oxygen in the Southern Ocean From Argo Floats: Determination of Processes Driving Air‐Sea Fluxes , 2017 .

[138]  G. Johnson,et al.  As El Niño builds, Pacific Warm Pool expands, ocean gains more heat , 2017 .

[139]  Henry C. Bittig,et al.  In Situ CO2 and O2 Measurements on a Profiling Float , 2013 .

[140]  Stephen C. Riser,et al.  Monsoon effects in the Bay of Bengal inferred from profiling float‐based measurements of wind speed and rainfall , 2008 .

[141]  M. Kawamiya,et al.  Remote effects of mixed layer development on ocean acidification in the subsurface layers of the North Pacific , 2017, Journal of Oceanography.

[142]  R. Ferrari,et al.  Turning Ocean Mixing Upside Down , 2015 .

[143]  J. Potemra,et al.  Numerical modeling with application to tracking marine debris. , 2012, Marine pollution bulletin.

[144]  X. Shang,et al.  Assessment of fine-scale parameterizations at low latitudes of the North Pacific , 2018, Scientific Reports.

[145]  Takeshi Kawano,et al.  Deep ocean heat content changes estimated from observation and reanalysis product and their influence on sea level change , 2011 .

[146]  Alicia R. Karspeck,et al.  A decadal prediction case study: Late twentieth-century North Atlantic Ocean heat content , 2012 .

[147]  Hervé Claustre,et al.  Understanding the Dynamics of the Oxic‐Anoxic Interface in the Black Sea , 2018 .

[148]  Russ E. Davis,et al.  Profiling ALACEs and Other Advances in Autonomous Subsurface Floats , 2001 .

[149]  John Gould,et al.  ARGO - a decade of progress , 2010 .

[150]  R. Ferrari,et al.  Floats with bio-optical sensors reveal what processes trigger the North Atlantic bloom , 2018, Nature Communications.

[151]  H. Igarashi,et al.  Simulated Rapid Warming of Abyssal North Pacific Waters , 2010, Science.

[152]  Fabrizio D'Ortenzio,et al.  ProVal: A New Autonomous Profiling Float for High Quality Radiometric Measurements , 2018, Front. Mar. Sci..

[153]  P. Lehodey,et al.  Successful Blue Economy Examples With an Emphasis on International Perspectives , 2019, Front. Mar. Sci..

[154]  Michael J. Behrenfeld,et al.  In situ evaluation of the initiation of the North Atlantic phytoplankton bloom , 2010 .

[155]  Scott C. Doney,et al.  Adding Oxygen to Argo: Developing a Global in-situ Observatory for Ocean Deoxygenation and Biogeochemistry , 2010 .

[156]  Dennis A. Hansell,et al.  Changes in Ocean Heat, Carbon Content, and Ventilation: A Review of the First Decade of GO-SHIP Global Repeat Hydrography. , 2016, Annual review of marine science.

[157]  Hanno Hildmann A Framework for the Development , Design and Deployment of Customisable Mobile and Hand Held Device Based Serious Games , 2008 .

[158]  M. Watkins,et al.  The gravity recovery and climate experiment: Mission overview and early results , 2004 .

[159]  M. Gregg,et al.  Scaling turbulent dissipation in the thermocline , 1989 .