The effect of PEGylation of mesoporous silica nanoparticles on nonspecific binding of serum proteins and cellular responses.

[1]  Jeffrey I. Zink,et al.  Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery , 2010, BiOS.

[2]  Juan L. Vivero-Escoto,et al.  Mesoporous silica nanoparticles for reducing hemolytic activity towards mammalian red blood cells. , 2009, Small.

[3]  Esther H Chang,et al.  Does a targeting ligand influence nanoparticle tumor localization or uptake? , 2008, Trends in biotechnology.

[4]  Wayne Ouellette,et al.  Cytotoxicity of mesoporous silica nanomaterials. , 2008, Journal of inorganic biochemistry.

[5]  Monty Liong,et al.  Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. , 2008, ACS nano.

[6]  Ye-Zi You,et al.  Temperature-controlled uptake and release in PNIPAM-modified porous silica nanoparticles , 2008 .

[7]  T. Asefa,et al.  Mesoporous silica nanoparticles inhibit cellular respiration. , 2008, Nano letters.

[8]  Di Zhang,et al.  Control of drug release through the in situ assembly of stimuli-responsive ordered mesoporous silica with magnetic particles. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.

[9]  María Vallet-Regí,et al.  Mesoporous materials for drug delivery. , 2007, Angewandte Chemie.

[10]  Victor S-Y Lin,et al.  Mesoporous silica nanoparticle based controlled release, drug delivery, and biosensor systems. , 2007, Chemical communications.

[11]  Julia Xiaojun Zhao,et al.  Toxicity of luminescent silica nanoparticles to living cells. , 2007, Chemical research in toxicology.

[12]  Victor S-Y Lin,et al.  Mesoporous silica nanoparticles for intracellular delivery of membrane-impermeable proteins. , 2007, Journal of the American Chemical Society.

[13]  Brian G. Trewyn,et al.  Mesoporous Silica Nanoparticles for Drug Delivery and Biosensing Applications , 2007 .

[14]  Jean-Pierre Benoit,et al.  Parameters influencing the stealthiness of colloidal drug delivery systems. , 2006, Biomaterials.

[15]  Cari D. Pentecost,et al.  Construction of a pH-driven supramolecular nanovalve. , 2006, Organic letters.

[16]  Nicholas A Peppas,et al.  Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. , 2006, International journal of pharmaceutics.

[17]  A. Azadi,et al.  Pharmacokinetic Consequences of Pegylation , 2006, Drug delivery.

[18]  F. Xiao,et al.  pH-responsive carrier system based on carboxylic acid modified mesoporous silica and polyelectrolyte for drug delivery , 2005 .

[19]  Francesco M Veronese,et al.  PEGylation, successful approach to drug delivery. , 2005, Drug discovery today.

[20]  Yufang Zhu,et al.  Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core-shell structure. , 2005, Angewandte Chemie.

[21]  Victor S-Y Lin,et al.  Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles. , 2005, Angewandte Chemie.

[22]  Chung-Yuan Mou,et al.  Well-Ordered Mesoporous Silica Nanoparticles as Cell Markers , 2005 .

[23]  Mehmet Sarikaya,et al.  Electrochemical nanofabrication using crystalline protein masks. , 2005, Nano letters.

[24]  Victor S-Y Lin,et al.  A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent. , 2004, Journal of the American Chemical Society.

[25]  Chen,et al.  Hollow Spheres of Mesoporous Aluminosilicate with a Three-Dimensional Pore Network and Extraordinarily High Hydrothermal Stability , 2003 .

[26]  Masahiro Fujiwara,et al.  Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica , 2003, Nature.

[27]  M. Vallet‐Regí,et al.  A New Property of MCM-41: Drug Delivery System , 2001 .

[28]  R. Tiozzo,et al.  Pure-silica zeolites (Porosils) as model solids for the evaluation of the physicochemical features determining silica toxicity to macrophages. , 2000, Chemical research in toxicology.

[29]  F. Bordi,et al.  Morphological and functional alterations of human erythrocytes induced by SiO2 particles: An electron microscopy and dielectric spectroscopy study. , 1999, Environmental research.

[30]  Chen,et al.  A Film Tension Theory of Phagocytosis , 1997, Journal of colloid and interface science.

[31]  K. Balkus,et al.  Enzyme immobilization in MCM-41 molecular sieve , 1996 .

[32]  E. Blomberg,et al.  Protein interactions at solid surfaces , 1995 .

[33]  M C Davies,et al.  Steric stabilization of microspheres with grafted polyethylene oxide reduces phagocytosis by rat Kupffer cells in vitro. , 1991, Biomaterials.

[34]  Joseph D. Andrade,et al.  Protein—surface interactions in the presence of polyethylene oxide , 1991 .

[35]  Y. Ikada,et al.  Phagocytosis of polymer microspheres by macrophages , 1990 .

[36]  A. Stuart Phagocytic Engulfment and Cell Adhesiveness as Cellular Surface Phenomena , 1977 .

[37]  J. Depasse,et al.  Relation between the toxicity of silica and its affinity for tetraalkylammonium groups. Comparison between Si02 and Ti02 , 1976 .

[38]  A. Allison,et al.  Physico-Chemical Properties of Silica in Relation to its Toxicity , 1966, Nature.