Direct Observations of Retention Failure in Ferroelectric Memories

Nonvolatile ferroelectric random-access memory uses ferroelectric thin films to save a polar state written by an electric field that is retained when the field is removed. After switching, the high energy of the domain walls separating regions of unlike polarization can drive backswitching resulting in a loss of switched domain volume, or in the case of very small domains, complete retention loss.

[1]  James F. Scott,et al.  The Physics of Ferroelectric Memories , 1998 .

[2]  Yi Zhang,et al.  Spontaneous vortex nanodomain arrays at ferroelectric heterointerfaces. , 2011, Nano letters.

[3]  Ho Won Jang,et al.  Ferroelastic switching for nanoscale non-volatile magnetoelectric devices. , 2010, Nature materials.

[4]  M. Tanaka,et al.  Polarization retention in SrBi2Ta2O9 thin films investigated at nanoscale , 2001 .

[5]  G. Arlt,et al.  Internal bias in ferroelectric ceramics: Origin and time dependence , 1988 .

[6]  R. Lamb,et al.  Ruthenium oxide and strontium ruthenate electrodes for ferroelectric thin-films capacitors , 2000 .

[7]  S. Gemming,et al.  First-principles study of ferroelectric domain walls in multiferroic bismuth ferrite , 2009, 0909.5294.

[8]  Enge Wang,et al.  Domain Dynamics During Ferroelectric Switching , 2011, Science.

[9]  A. Rappe,et al.  Nucleation and growth mechanism of ferroelectric domain-wall motion , 2007, Nature.

[10]  R. A. Moore,et al.  Effects of operating conditions on the fast‐decay component of the retained polarization in lead zirconate titanate thin films , 1994 .

[11]  I. P. Batra,et al.  Thermodynamic stability of thin ferroelectric films , 1972 .

[12]  J. Melngailis,et al.  Dynamics of ferroelastic domains in ferroelectric thin films , 2003, Nature materials.

[13]  E. Müller Work Function of Tungsten Single Crystal Planes Measured by the Field Emission Microscope , 1955 .

[14]  W. F. Peck,et al.  Single-Crystal Epitaxial Thin Films of the Isotropic Metallic Oxides Sr1–xCaxRuO3 (0 ≤ x ≤ 1) , 1992, Science.

[15]  Chang-Beom Eom,et al.  Fabrication and properties of epitaxial ferroelectric heterostructures with (SrRuO3) isotropic metallic oxide electrodes , 1993 .

[16]  Tae Won Noh,et al.  Polarization Relaxation Induced by a Depolarization Field in Ultrathin Ferroelectric BaTiO 3 Capacitors , 2005 .

[17]  R. Ramesh,et al.  Strain control of domain-wall stability in epitaxial BiFeO3 (110) films. , 2007, Physical review letters.

[18]  Watching domains grow: In-situ studies of polarization switching by combined scanning probe and scanning transmission electron microscopy , 2011, 1104.5050.

[19]  K. Rabe,et al.  Physics of thin-film ferroelectric oxides , 2005, cond-mat/0503372.

[20]  Jianbin Xu,et al.  Study of domain stability on (Pb0.76Ca0.24)TiO3 thin films using piezoresponse microscopy , 2002 .

[21]  B. Silverman,et al.  Depolarization fields in thin ferroelectric films , 1973 .

[22]  E. Williams,et al.  Polarization relaxation kinetics and 180° domain wall dynamics in ferroelectric thin films , 2001 .

[23]  J. Scott,et al.  Applications of Modern Ferroelectrics , 2007, Science.

[24]  M. Alexe,et al.  Device Physics of Ferroelectric Thin-Film Memories , 1999 .

[25]  S. M. Sze,et al.  Current transport in metal-semiconductor-metal (MSM) structures , 1971 .

[26]  Chang-Beom Eom,et al.  Size effects in ultrathin epitaxial ferroelectric heterostructures , 2004 .

[27]  R. Ramesh,et al.  Multiferroics: progress and prospects in thin films. , 2007, Nature materials.

[28]  B. Kang,et al.  Polarization retention in Pb(Zr0.4Ti0.6)O3 capacitors with IrO2 top electrodes , 2004 .

[29]  R. Waser,et al.  Relaxation mechanism of ferroelectric switching in Pb(Zr,Ti)O3 thin films , 2001 .