Subjective probabilities on "small" domains

The classic choice-theoretic construction of subjective probability (Savage, 1954) does not apply to preferences, like those in the Ellsberg Paradox, that reflect a distinction between risk and ambiguity. We formulate two representation results – one for expected utility, the other for probabilistic sophistication – that derive subjective probabilities but only on a “small” domain of risky events. Risky events can be either specified exogenously or in terms of choice behavior; in the latter case, both the values and the domain of probability are subjective. The analysis identifies a mathematical structure – called a mosaic – that is intuitive for both exogenous and behavioral specifications of risky events. This structure is weaker than an algebra or even a lambda-system.

[1]  B. Liu,et al.  [Effect of BN52021 on platelet activating factor induced aggregation of psoriatic polymorphonuclear neutrophils]. , 1994, Zhonghua yi xue za zhi.

[2]  Simon Grant,et al.  Subjective probability without monotonicity: or how Machina's mom may also be probabilistically sophisticated , 1995 .

[3]  Larry G. Epstein,et al.  Subjective Probabilities on Subjectively Unambiguous Events , 2001 .

[4]  L. J. Savage,et al.  The Foundations of Statistics , 1955 .

[5]  Larry G. Epstein A definition of uncertainty aversion , 1999 .

[6]  Richard S. Varga,et al.  Proof of Theorem 5 , 1983 .

[7]  Jiankang Zhang,et al.  Subjective ambiguity, expected utility and Choquet expected utility , 2002 .

[8]  Rakesh K. Sarin,et al.  A SIMPLE AXIOMATIZATION OF NONADDITIVE EXPECTED UTILITY , 1992 .

[9]  Massimo Marinacci,et al.  Ambiguity Made Precise: A Comparative Foundation , 1998, J. Econ. Theory.

[10]  Is it Possible to Define Subjective Probabilities in Purely Behavioral Terms? A Comment on Epstein-Zhang (2001) , 2006 .

[11]  D. Schmeidler,et al.  A More Robust Definition of Subjective Probability , 1992 .

[12]  Paolo Ghirardato,et al.  Defining Ambiguity and Ambiguity Attitude , 2003 .

[13]  P. Spreij Probability and Measure , 1996 .

[14]  Peter C. Fishburn,et al.  Utility theory for decision making , 1970 .

[15]  J. Milnor,et al.  AN AXIOMATIC APPROACH TO MEASURABLE UTILITY , 1953 .

[16]  C. Kraft,et al.  Intuitive Probability on Finite Sets , 1959 .

[17]  Klaus Nehring Capacities And Probabilistic Beliefs: A Precarious Coexistence , 1999 .

[18]  H. Bandemer Savage, L. J.: Foundations of Statistics. Dover Publ., Inc,. New York 1972. 310 S. , 1974 .

[19]  I. Gilboa,et al.  Maxmin Expected Utility with Non-Unique Prior , 1989 .

[20]  Peter P. Wakker,et al.  Agreeing Probability Measures for Comparative Probability Structures , 1981 .

[21]  Klaus Nehring,et al.  Decision-Making in the Context of Imprecise Probabilistic Beliefs , 2006 .

[22]  David Schmeidleis SUBJECTIVE PROBABILITY AND EXPECTED UTILITY WITHOUT ADDITIVITY , 1989 .

[23]  N. Meyers,et al.  H = W. , 1964, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Jiankang Zhang,et al.  Qualitative probabilities on λ-systems , 1999 .

[25]  Faruk Gul,et al.  Savagés theorem with a finite number of states , 1992 .

[26]  Ilkka Niiniluoto,et al.  A Note on Fine and Tight Qualitative Probabilities , 1972 .

[27]  P. Wakker,et al.  The Likelihood Method for Decision under Uncertainty , 2005 .

[28]  D. Ellsberg Decision, probability, and utility: Risk, ambiguity, and the Savage axioms , 1961 .

[29]  David M. Kreps Notes On The Theory Of Choice , 1988 .

[30]  M. Allais Le comportement de l'homme rationnel devant le risque : critique des postulats et axiomes de l'ecole americaine , 1953 .

[31]  F. Knight The economic nature of the firm: From Risk, Uncertainty, and Profit , 2009 .

[32]  B. D. Finetti La prévision : ses lois logiques, ses sources subjectives , 1937 .