(Optimal) duplication is not elementary recursive

In 1998 Asperti and Mairson proved that the cost of reducing a lambda-term using an optimal lambda-reducer (a la Levy) cannot be bound by any elementary function in the number of shared-beta steps. We prove in this paper that an analogous result holds for Lamping's abstract algorithm. That is, there is no elementary function in the number of shared beta steps bounding the number of duplication steps of the optimal reducer. This theorem vindicates the oracle of Lamping's algorithm as the culprit for the negative result of Asperti and Mairson. The result is obtained using as a technical tool Elementary Affine Logic.

[1]  Andrea Asperti Light affine logic , 1998, Proceedings. Thirteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.98CB36226).

[2]  Paolo Coppola,et al.  Typing Lambda Terms in Elementary Logic with Linear Constraints , 2001, TLCA.

[3]  Cosimo Laneve,et al.  On the Dynamics of Sharing Graphs , 1997, ICALP.

[4]  Martín Abadi,et al.  Linear logic without boxes , 1992, [1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science.

[5]  Richard Statman,et al.  The typed λ-calculus is not elementary recursive , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[6]  Albert R. Meyer The inherent computational complexity of theories of ordered sets , 1974 .

[7]  Richard Statman,et al.  The Typed lambda-Calculus is not Elementary Recursive , 1979, Theor. Comput. Sci..

[8]  Harry G. Mairson,et al.  On global dynamics of optimal graph reduction , 1997, ICFP '97.

[9]  Martín Abadi,et al.  The geometry of optimal lambda reduction , 1992, POPL '92.

[10]  Ron Dinishak The optimal implementation of functional programming languages , 2000, SOEN.

[11]  Harry G. Mairson A Simple Proof of a Theorem of Statman , 1992, Theor. Comput. Sci..

[12]  Andrea Asperti,et al.  Linear Logic, Comonads and Optimal Reduction , 1995, Fundam. Informaticae.

[13]  Patrick Lincoln,et al.  Linear logic , 1992, SIGA.

[14]  John Lamping An algorithm for optimal lambda calculus reduction , 1989, POPL '90.

[15]  Vinod Kathail,et al.  Optimal interpreters for lambda-calculus based functional languages , 1990 .

[16]  M. Nivat Theoretical Computer Science Volume 213-214 , 1999 .

[17]  Harry G. Mairson,et al.  Parallel Beta Reduction Is Not Elementary Recursive , 2001, Inf. Comput..

[18]  Jean-Yves Girard,et al.  Light Linear Logic , 1998, Inf. Comput..

[19]  Andrea Asperti,et al.  The optimal implementation of functional programming languages , 1998, Cambridge tracts in theoretical computer science.

[20]  Andrea Asperti,et al.  Intuitionistic Light Affine Logic , 2002, TOCL.

[21]  Andrea Asperti On the complexity of beta-reduction , 1996, POPL '96.

[22]  Harry G. Mairson,et al.  Optimality and inefficiency: what isn't a cost model of the lambda calculus? , 1996, ICFP '96.