Structure refinement and crystal chemistry of tokkoite and tinaksite from the Murun massif (Russia)

Abstract The structures of tokkoite, K2Ca4[Si7O18OH](OH,F) and tinaksite, K2Ca2NaTi[Si7O18OH]O from the Murun massif (Russia) were refined from single-crystal X-ray diffraction data in the triclinic space group P1̄: Average crystallographic data are a ≈ 10.423, b ≈ 12.477, c ≈ 7.112 Å, α ≈ 89.92°, β ≈ 99.68°, γ ≈ 92.97°, V ≈ 910.5 Å3 for tokkoite; a ≈ 10.373, b ≈ 12.176, c ≈ 7.057 Å, α ≈ 90.82°, β ≈ 99.22°, γ ≈ 92.80°, V ≈ 878.5 Å3 for tinaksite. The substantial similarities between the geometrical parameters of the tokkoite and tinaksite structures led us to conclude that the two minerals are isostructural. However, major differences of tokkoite with respect to tinaksite are larger lattice constants, especially concerning the b parameter, longer distances, especially ; larger values of the M1-M3 and O20-O2 bond lengths, and a stronger distortion of the M1 polyhedron. Mössbauer analysis showed that significant trivalent iron is present, VIFe3+ 40.0(7)% in tokkoite and 12.8(3)% in tinaksite. It is confirmed that 2Ca(M1+M2)2+ + (F, OH)-(O20) ↔ Ti4+(M1) +Na+(M2) +O-(O20) is the exchange reaction that describes the relation between tokkoite and tinaksite. In addition, this exchange reaction causes local stress involving mainly the M1 site and its interaction with the M2 and M3 sites.

[1]  E. Mesto,et al.  Yangzhumingite and phlogopite from the Kvaløya lamproite (North Norway): Structure, composition and origin , 2014 .

[2]  E. Mesto,et al.  Armstrongite from Khan Bogdo (Mongolia): Crystal structure determination and implications for zeolite-like cation exchange properties , 2014 .

[3]  A. Ivanov,et al.  Age and origin of charoitite, Malyy Murun massif, Siberia, Russia , 2014 .

[4]  E. Mesto,et al.  Chemical and structural study of 1M- and 2M1-phlogopites coexisting in the same Kasenyi kamafugitic rock (SW Uganda) , 2012, Physics and Chemistry of Minerals.

[5]  E. Schingaro,et al.  Substitution mechanisms and implications for the estimate of water fugacity for Ti-rich phlogopite from Mt. Vulture, Potenza, Italy , 2011 .

[6]  G. Pedrazzi,et al.  Crystal chemistry of Ti-rich fluorophlogopite from Presidente Olegario, Alto Paranaíba igneous province, Brazil , 2011 .

[7]  N. Vladykin Potassium alkaline lamproite-carbonatite complexes: petrology, genesis, and ore reserves , 2009 .

[8]  Gervais Chapuis,et al.  SUPERFLIP– a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions , 2007 .

[9]  F. Hawthorne,et al.  The crystal chemistry of senkevichite, Cs K Na Ca2 Ti O [Si7O18(OH)], from the dara-i-pioz alkaline massif, Northern Tajikistan , 2006 .

[10]  M. Dyar,et al.  Mössbauer Spectroscopy of Earth and Planetary Materials , 2006 .

[11]  Richard I. Cooper,et al.  CRYSTALS version 12: software for guided crystal structure analysis , 2003 .

[12]  I. Brown Topology and Chemistry , 2002 .

[13]  I. Rozhdestvenskaya,et al.  Crystallochemical characteristics of alkali calcium silicates from charoitites , 2002 .

[14]  F. Hawthorne,et al.  Site populations in minerals; terminology and presentation of results of crystal-structure refinement , 1995 .

[15]  David J. Watkin,et al.  The control of difficult refinements , 1994 .

[16]  Y. Lazebnik,et al.  The crystal structure of tokkoite and its relation to the structure of tinaksite , 1989 .

[17]  G. Ivaldi,et al.  Bond valence vs bond length in O…O hydrogen bonds , 1988 .

[18]  I. D. Brown,et al.  Bond‐valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database , 1985 .

[19]  F. Liebau,et al.  Structural Chemistry of Silicates: Structure, Bonding, and Classification , 1985 .

[20]  B. Craven,et al.  Internal molecular vibrations from crystal diffraction data by quasinormal mode analysis , 1985 .

[21]  G. Bissert Verfeinerung der Struktur von Tinaksit, Ca2K2NaTiO[Si7O18(OH)] , 1980 .

[22]  N. V. Belov,et al.  Crystal Structure of Tinaxite = NaK 2 Ca 2 TiSi 7 O 19 (OH) , 1971 .