Molecular basis of an agarose metabolic pathway acquired by a human intestinal symbiont

[1]  B. Henrissat,et al.  Complex pectin metabolism by gut bacteria reveals novel catalytic functions , 2017, Nature.

[2]  H. Brumer,et al.  Polysaccharide Utilization Loci: Fueling Microbial Communities , 2017, Journal of bacteriology.

[3]  M. H. Foley,et al.  The Sus operon: a model system for starch uptake by the human gut Bacteroidetes , 2016, Cellular and Molecular Life Sciences.

[4]  H. Gilbert,et al.  Coevolution of yeast mannan digestion: Convergence of the civilized human diet, distal gut microbiome, and host immunity , 2015, Gut microbes.

[5]  B. Henrissat,et al.  Glycan complexity dictates microbial resource allocation in the large intestine , 2015, Nature Communications.

[6]  Nieng Yan,et al.  Structural Biology of the Major Facilitator Superfamily Transporters. , 2015, Annual review of biophysics.

[7]  Hee Taek Kim,et al.  The novel catabolic pathway of 3,6-anhydro-L-galactose, the main component of red macroalgae, in a marine bacterium. , 2015, Environmental microbiology.

[8]  K. Kim,et al.  Red macroalgae as a sustainable resource for bio-based products. , 2015, Trends in biotechnology.

[9]  A. Groisillier,et al.  Biochemical and structural investigation of two paralogous glycoside hydrolases from Zobellia galactanivorans: novel insights into the evolution, dimerization plasticity and catalytic mechanism of the GH117 family. , 2015, Acta crystallographica. Section D, Biological crystallography.

[10]  Eric C. Martens,et al.  Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism , 2015, Nature.

[11]  H. Brumer,et al.  The devil lies in the details: how variations in polysaccharide fine-structure impact the physiology and evolution of gut microbes. , 2014, Journal of molecular biology.

[12]  Yu Cao,et al.  Isolation and Characterization of Agar-Degrading Endophytic Bacteria from Plants , 2014, Current Microbiology.

[13]  M. Czjzek,et al.  A sweet new wave: structures and mechanisms of enzymes that digest polysaccharides from marine algae. , 2014, Current opinion in structural biology.

[14]  B. Hamaker,et al.  Multifunctional Nutrient-Binding Proteins Adapt Human Symbiotic Bacteria for Glycan Competition in the Gut by Separately Promoting Enhanced Sensing and Catalysis , 2014, mBio.

[15]  A. B. Dalia,et al.  Unravelling the Multiple Functions of the Architecturally Intricate Streptococcus pneumoniae β-galactosidase, BgaA , 2014, PLoS pathogens.

[16]  Hee Taek Kim,et al.  A Novel Agarolytic β-Galactosidase Acts on Agarooligosaccharides for Complete Hydrolysis of Agarose into Monomers , 2014, Applied and Environmental Microbiology.

[17]  C. Xiang,et al.  Isolation and Characterization of an Agaro-Oligosaccharide (AO)-Hydrolyzing Bacterium from the Gut Microflora of Chinese Individuals , 2014, PloS one.

[18]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[19]  H. Brumer,et al.  A discrete genetic locus confers xyloglucan metabolism in select human gut Bacteroidetes , 2014, Nature.

[20]  L. Comstock,et al.  An Ecological Network of Polysaccharide Utilization among Human Intestinal Symbionts , 2014, Current Biology.

[21]  Pedro M. Coutinho,et al.  The carbohydrate-active enzymes database (CAZy) in 2013 , 2013, Nucleic Acids Res..

[22]  A. Boraston,et al.  Substrate Recognition and Hydrolysis by a Family 50 exo-β-Agarase, Aga50D, from the Marine Bacterium Saccharophagus degradans* , 2013, The Journal of Biological Chemistry.

[23]  H. Flint,et al.  The role of “keystone” species in the degradation of recalcitrant substrates , 2013 .

[24]  B. Henrissat,et al.  How nature can exploit nonspecific catalytic and carbohydrate binding modules to create enzymatic specificity , 2012, Proceedings of the National Academy of Sciences.

[25]  A. Boraston,et al.  Bacteria of the human gut microbiome catabolize red seaweed glycans with carbohydrate-active enzyme updates from extrinsic microbes , 2012, Proceedings of the National Academy of Sciences.

[26]  Takayoshi Inoue,et al.  Cloning of agarase gene from non-marine agarolytic bacterium Cellvibrio sp. , 2012, Journal of microbiology and biotechnology.

[27]  T. Tonon,et al.  Characterization of the first alginolytic operons in a marine bacterium: from their emergence in marine Flavobacteriia to their independent transfers to marine Proteobacteria and human gut Bacteroides. , 2012, Environmental microbiology.

[28]  T. Smith,et al.  Multidomain Carbohydrate-binding Proteins Involved in Bacteroides thetaiotaomicron Starch Metabolism* , 2012, The Journal of Biological Chemistry.

[29]  G. Michel,et al.  Biochemical and Structural Characterization of the Complex Agarolytic Enzyme System from the Marine Bacterium Zobellia galactanivorans* , 2012, The Journal of Biological Chemistry.

[30]  Xin Chen,et al.  dbCAN: a web resource for automated carbohydrate-active enzyme annotation , 2012, Nucleic Acids Res..

[31]  S. Firbank,et al.  A scissor blade-like closing mechanism implicated in transmembrane signaling in a Bacteroides hybrid two-component system , 2012, Proceedings of the National Academy of Sciences.

[32]  Y. Chang,et al.  Agar degradation by microorganisms and agar-degrading enzymes , 2012, Applied Microbiology and Biotechnology.

[33]  A. Boraston,et al.  Analysis of Keystone Enzyme in Agar Hydrolysis Provides Insight into the Degradation (of a Polysaccharide from) Red Seaweeds* , 2012, The Journal of Biological Chemistry.

[34]  L. Wildling,et al.  Distribution of sialic acids on mucins and gels: a defense mechanism. , 2012, Biophysical journal.

[35]  Y. Chang,et al.  Identification and Biochemical Characterization of Sco3487 from Streptomyces coelicolor A3(2), an Exo- and Endo-Type β-Agarase-Producing Neoagarobiose , 2011, Journal of bacteriology.

[36]  A. Boraston,et al.  Quantitative approaches to the analysis of carbohydrate-binding module function. , 2012, Methods in enzymology.

[37]  Bernard Henrissat,et al.  Recognition and Degradation of Plant Cell Wall Polysaccharides by Two Human Gut Symbionts , 2011, PLoS biology.

[38]  Hee Taek Kim,et al.  Crystal structure of a key enzyme in the agarolytic pathway, α-neoagarobiose hydrolase from Saccharophagus degradans 2-40. , 2011, Biochemical and biophysical research communications.

[39]  A. Groisillier,et al.  Discovery and structural characterization of a novel glycosidase family of marine origin. , 2011, Environmental microbiology.

[40]  Ramón Doallo,et al.  ProtTest 3: fast selection of best-fit models of protein evolution , 2011, Bioinform..

[41]  M. Czjzek,et al.  Structural analysis of the degradation products of porphyran digested by Zobellia galactanivorans β-porphyranase A , 2011 .

[42]  D. Jun,et al.  Isolation of a novel freshwater agarolytic Cellvibrio sp. KY-YJ-3 and characterization of its extracellular beta-agarase. , 2010, Journal of microbiology and biotechnology.

[43]  G. Michel,et al.  Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota , 2010, Nature.

[44]  Sang Moo Kim,et al.  Agarase: Review of Major Sources, Categories, Purification Method, Enzyme Characteristics and Applications , 2010, Marine drugs.

[45]  Vincent B. Chen,et al.  Correspondence e-mail: , 2000 .

[46]  Hee Taek Kim,et al.  Overexpression and molecular characterization of Aga50D from Saccharophagus degradans 2-40: an exo-type β-agarase producing neoagarobiose , 2010, Applied Microbiology and Biotechnology.

[47]  Ziniu Yu,et al.  A Novel β-Agarase with High pH Stability from Marine Agarivorans sp. LQ48 , 2010, Marine Biotechnology.

[48]  Eric C. Martens,et al.  Complex Glycan Catabolism by the Human Gut Microbiota: The Bacteroidetes Sus-like Paradigm , 2009, The Journal of Biological Chemistry.

[49]  Wen Liu,et al.  Biosynthesis of 3-hydroxy-5-methyl-o-methyltyrosine in the saframycin/ safracin biosynthetic pathway. , 2009, Journal of microbiology and biotechnology.

[50]  C. Pan,et al.  Gene cloning, expression, and characterization of a beta-agarase, agaB34,from Agarivorans albus YKW-34. , 2009, Journal of microbiology and biotechnology.

[51]  A. Boraston,et al.  The structural basis of substrate recognition in an exo-beta-D-glucosaminidase involved in chitosan hydrolysis. , 2009, Journal of molecular biology.

[52]  Brandi L. Cantarel,et al.  The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics , 2008, Nucleic Acids Res..

[53]  B. Henrissat,et al.  Complete Genome Sequence of the Complex Carbohydrate-Degrading Marine Bacterium, Saccharophagus degradans Strain 2-40T , 2008, PLoS genetics.

[54]  Mark Johnson,et al.  NCBI BLAST: a better web interface , 2008, Nucleic Acids Res..

[55]  Paul S. Cohen,et al.  Comparison of Carbon Nutrition for Pathogenic and Commensal Escherichia coli Strains in the Mouse Intestine , 2008, Infection and Immunity.

[56]  B. Henrissat,et al.  Complete Genome Sequence of the Complex Carbohydrate-Degrading Marine Bacterium , Saccharophagus degradans Strain 2-40 T , 2008 .

[57]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[58]  Jack Snoeyink,et al.  MolProbity: all-atom contacts and structure validation for proteins and nucleic acids , 2007, Nucleic Acids Res..

[59]  Wei-Wei Zhang,et al.  Cloning, Characterization, and Molecular Application of a Beta-Agarase Gene from Vibrio sp. Strain V134 , 2007, Applied and Environmental Microbiology.

[60]  G. Mortier,et al.  qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data , 2007, Genome Biology.

[61]  Kevin Cowtan,et al.  The Buccaneer software for automated model building. 1. Tracing protein chains. , 2006, Acta crystallographica. Section D, Biological crystallography.

[62]  Justin L Sonnenburg,et al.  A hybrid two-component system protein of a prominent human gut symbiont couples glycan sensing in vivo to carbohydrate metabolism. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[63]  B. Henrissat,et al.  Genomic and Proteomic Analyses of the Agarolytic System Expressed by Saccharophagus degradans 2-40 , 2006, Applied and Environmental Microbiology.

[64]  G. Michel,et al.  Bioconversion of red seaweed galactans: a focus on bacterial agarases and carrageenases , 2006, Applied Microbiology and Biotechnology.

[65]  Ari Löytynoja,et al.  An algorithm for progressive multiple alignment of sequences with insertions. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[66]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[67]  S. Ito,et al.  Cloning, expression, and characterization of a glycoside hydrolase family 86 β-agarase from a deep-sea Microbulbifer-like isolate , 2004, Applied Microbiology and Biotechnology.

[68]  Robert C. Edgar,et al.  MUSCLE: a multiple sequence alignment method with reduced time and space complexity , 2004, BMC Bioinformatics.

[69]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[70]  M. Bibb,et al.  The agarase gene (dagA) of Streptomyces coelicolor A3(2): nucleotide sequence and transcriptional analysis , 1987, Molecular and General Genetics MGG.

[71]  W. Harder,et al.  Isolation and characterization of Cytophaga flevensis sp. nov., a new agarolytic flexibacterium , 2004, Antonie van Leeuwenhoek.

[72]  B. Henrissat,et al.  The Three-dimensional Structures of Two β-Agarases* , 2003, Journal of Biological Chemistry.

[73]  A. Krogh,et al.  Prediction of lipoprotein signal peptides in Gram‐negative bacteria , 2003, Protein science : a publication of the Protein Society.

[74]  Ron D. Appel,et al.  ExPASy: the proteomics server for in-depth protein knowledge and analysis , 2003, Nucleic Acids Res..

[75]  Matthew Berriman,et al.  Viewing and Annotating Sequence Data with Artemis , 2003, Briefings Bioinform..

[76]  Abigail A. Salyers,et al.  Characterization of Four Outer Membrane Proteins Involved in Binding Starch to the Cell Surface ofBacteroides thetaiotaomicron , 2000, Journal of bacteriology.

[77]  P. Gounon,et al.  Testing the ‘+2 rule’ for lipoprotein sorting in the Escherichia coli cell envelope with a new genetic selection , 1999, Molecular microbiology.

[78]  H R Powell,et al.  The Rossmann Fourier autoindexing algorithm in MOSFLM. , 1999, Acta crystallographica. Section D, Biological crystallography.

[79]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[80]  A. Salyers,et al.  Effect of regulatory protein levels on utilization of starch by Bacteroides thetaiotaomicron , 1996, Journal of bacteriology.

[81]  P. Frey The Leloir pathway: a mechanistic imperative for three enzymes to change the stereochemical configuration of a single carbon in galactose , 1996, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[82]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[83]  P. Jackson Fluorophore-assisted carbohydrate electrophoresis: a new technology for the analysis of glycans. , 1993, Biochemical Society transactions.

[84]  A. Brünger Free R value: a novel statistical quantity for assessing the accuracy of crystal structures , 1992, Nature.

[85]  R. Belas Sequence analysis of the agrA gene encoding beta-agarase from Pseudomonas atlantica , 1989, Journal of bacteriology.

[86]  R. Freter,et al.  Mechanisms That Control Bacterial Populations in Continuous-Flow Culture Models of Mouse Large Intestinal Flora , 1983, Infection and immunity.