Layered Neural Networks with Gaussian Hidden Units as Universal Approximations

A neural network with a single layer of hidden units of gaussian type is proved to be a universal approximator for real-valued maps defined on convex, compact sets of Rn.

[1]  A. Prékopa,et al.  Decomposition of superpositions of distribution functions , 1962 .

[2]  W. Rudin Principles of mathematical analysis , 1964 .

[3]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[4]  A. Lapedes,et al.  Nonlinear Signal Processing Using Neural Networks , 1987 .

[5]  A. Lapedes,et al.  Nonlinear signal processing using neural networks: Prediction and system modelling , 1987 .

[6]  Sukhan Lee,et al.  Multilayer feedforward potential function network , 1988, IEEE 1988 International Conference on Neural Networks.

[7]  S. M. Nikol'skii,et al.  APPROXIMATION OF FUNCTIONS ON THE SPHERE , 1988 .

[8]  John E. Moody,et al.  Fast Learning in Multi-Resolution Hierarchies , 1988, NIPS.

[9]  John Moody,et al.  Fast Learning in Networks of Locally-Tuned Processing Units , 1989, Neural Computation.

[10]  Ken-ichi Funahashi,et al.  On the approximate realization of continuous mappings by neural networks , 1989, Neural Networks.

[11]  David E. Rumelhart,et al.  Product Units: A Computationally Powerful and Biologically Plausible Extension to Backpropagation Networks , 1989, Neural Computation.

[12]  H. White,et al.  Universal approximation using feedforward networks with non-sigmoid hidden layer activation functions , 1989, International 1989 Joint Conference on Neural Networks.

[13]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[14]  Mahesan Niranjan,et al.  Neural networks and radial basis functions in classifying static speech patterns , 1990 .

[15]  James D. Keeler,et al.  Predicting the Future: Advantages of Semilocal Units , 1991, Neural Computation.

[16]  Petri A. Jokinen,et al.  Dynamically capacity allocating neural networks for continuous learning using sequential processing of data , 1991 .

[17]  I. W. Sandberg Approximations for nonlinear functions , 1992 .