Bose-Einstein condensation has been achieved in a magnetic surface microtrap with 4 x 10(5) (87)Rb atoms. The strongly anisotropic trapping potential is generated by a microstructure which consists of microfabricated linear copper conductor of widths ranging from 3 to 30 microm. After loading a high number of atoms from a pulsed thermal source directly into a magneto-optical trap the magnetically stored atoms are transferred into the microtrap by adiabatic transformation of the trapping potential. In the microtrap the atoms are cooled to condensation using forced rf-evaporation. The complete in vacuo trap design is compatible with ultrahigh vacuum below 2 x 10(-11) mbar.