Ground penetrating radar numerical simulation with interpolating wavelet scales method and research on fourth-order Runge-Kutta auxiliary differential equation perfectly matched layer

Ground penetrating radar (GPR) forward is one of the geophysical research directions.Through the forward of geological model,the database of radar model can be enriched and the characteristics of typical geological radar echo images can be understood,which in turn can guide the data interpretation of GPR measured profile,thereby improving the GPR data interpretation level.In this article,the interpolating wavelet scale function by using iterative interpolation method is presented,and the derivative of scale function is used in spatial differentiation of discrete Maxwell equations. The forward modeling formula of GPR based on the interpolation wavelet scale method is derived by using fourth-order Runge-Kutta method (RK4) for calculating the higher time derivative.Compared with the conventional finite difference time domain (FDTD) algorithm based on the central difference method,the interpolation wavelet scale algorithm improves the accuracy of GPR wave equation in both space and time discretization.Firstly,the FDTD algorithm and the interpolation wavelet scale method are applied to the forward modeling of a layered model with analytic solution. Single channel radar data and analytical solution fitting indicate that the interpolation wavelet scale method has higher accuracy than FDTD,with the same mesh generation used.Therefore,auxiliary differential equation perfectly matching layer (ADE-PML) boundary condition is used on an interpolation wavelet scale,and the comparisons between reflection errors obtained using CPML (FDTD),RK4ADE-PML (FDTD),and RK4ADE-PML (interpolating wavelet scales) in a homogeneous medium model show that the absorption effect of RK4ADE-PML (interpolating wavelet scales) is better than the other two absorbing boundaries.Finally,interpolation wavelet scale method,with both UPML,FDTD and RK4ADE-PML loaded,is used for two-dimensional GPR forward modeling,showing good absorption effect for evanescent wave.From all the experimental results,the following conclusions are obtained.1) Using the derivative of the interpolating wavelet scale function instead of central difference schemes for the spatial derivative discretization of Maxwell equations and time derivative calculated using the fourth-order Runge Kutta algorithm,the interpolating wavelet scale algorithm has higher accuracy than regular FDTD algorithm due to the improvement in the spatial and time accuracy of GPR wave equation.2) The best absorption layer parameters of interpolating wavelet scale RK4ADE-PML are selected, when the maximum value of the reflection error is the minimum.The maximum reflection error can reach-93 dB,which increases 20 dB compared with that of UMPL boundary in FDTD algorithm.And the higher simulation accuracy of interpolating wavelet scale algorithm than FDTD algorithm is confirmed after calculating single channel radar data.3) Comparing wave field snapshots of GPR forward modeling,radar pictures from wide-angle method and section method indicates that interpolating wavelet scale RK4ADE-PML reduces reflection error of absorption boundary,improves both spatial and time accuracy,is more effective than UPML boundary in eliminating false reflection of large angle incidence, and has better absorption effect for evanescent wave and low-frequency wave.