Towards new sensing capabilities for legged locomotion using real-time state estimation with low-cost IMUs. (Vers de nouvelles capacités de perception pour les robotes à jambes à l'aide de l'estimation d'états temps réel avec des centrales inertielles à bas coût)

Estimation in robotics is an important subject affected by trade-offs between some major critera from which we can cite the computation time and the accuracy. The importance of these two criteria are application-dependent. If the computation time is not important for off-line methods, it becomes critical when the application has to run on real-time. Similarly, accuracy requirements are dependant on the applications. EKF estimators are widely used to satisfy real-time constraints while achieving acceptable accuracies. One sensor widely used in trajectory estimation problems remains the inertial measurement units (IMUs) providing data at a high rate. The main contribution of this thesis is a clear presentation of the preintegration theory yielding in a better use IMUs. We apply this method for estimation problems in both pedestrian and humanoid robots navigation to show that real-time estimation using a low- cost IMU is possible with smoothing methods while formulating the problems with a factor graph. We also investigate the calibration of the IMUs as it is a critical part of those sensors. All the development made during this thesis was thought with a visual-inertial SLAM background as a mid-term perspective. Firthermore, this work tries to rise another question when it comes to legged robots. In opposition to their usual architecture, could we use multiple low- cost IMUs on the robot to get valuable information about the motion being executed?

[1]  J. S. Ortega Towards visual localization, mapping and moving objects tracking by a mobile robot : a geometric and probabilistic approach , 2007 .

[2]  Thomas Seel Learning control and inertial realtime gait analysis in biomedical applications , 2016 .

[3]  Patrick Robertson,et al.  FootSLAM: Pedestrian Simultaneous Localization and Mapping Without Exteroceptive Sensors—Hitchhiking on Human Perception and Cognition , 2012, Proceedings of the IEEE.

[4]  Patrick Rives,et al.  Real-time Quadrifocal Visual Odometry , 2010, Int. J. Robotics Res..

[5]  Robert Riener,et al.  A survey of sensor fusion methods in wearable robotics , 2015, Robotics Auton. Syst..

[6]  Roman Kamnik,et al.  Kinematics based sensory fusion for wearable motion assessment in human walking , 2014, Comput. Methods Programs Biomed..

[7]  Thomas B. Schön,et al.  MEMS-based inertial navigation based on a magnetic field map , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[8]  Robert E. Mahony,et al.  Attitude estimation on SO[3] based on direct inertial measurements , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[9]  Roland Siegwart,et al.  Introduction to Autonomous Mobile Robots , 2004 .

[10]  James V. Stone Bayes' Rule: A Tutorial Introduction to Bayesian Analysis , 2013 .

[11]  Paul D. Groves,et al.  Inertial Navigation Versus Pedestrian Dead Reckoning: Optimizing the Integration , 2007 .

[12]  Thomas Schauer,et al.  Realtime EMG analysis for transcutaneous electrical stimulation assisted gait training in stroke patients , 2016 .

[13]  Eric Foxlin,et al.  Pedestrian tracking with shoe-mounted inertial sensors , 2005, IEEE Computer Graphics and Applications.

[14]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[15]  Hauke Strasdat,et al.  Visual SLAM: Why filter? , 2012, Image Vis. Comput..

[16]  Stergios I. Roumeliotis,et al.  A Multi-State Constraint Kalman Filter for Vision-aided Inertial Navigation , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[17]  M. Devy,et al.  Robot Localization Algorithm using Odometry and RFID Technology , 2010 .

[18]  Frank Dellaert,et al.  iSAM2: Incremental smoothing and mapping using the Bayes tree , 2012, Int. J. Robotics Res..

[19]  Alex Pentland,et al.  Recursive Estimation of Motion, Structure, and Focal Length , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Patrick Rives,et al.  Positioning of a robot with respect to an object, tracking it and estimating its velocity by visual servoing , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[21]  Edwin Olson,et al.  Fast iterative alignment of pose graphs with poor initial estimates , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[22]  Tomoya Ishikawa,et al.  A method of pedestrian dead reckoning using action recognition , 2010, IEEE/ION Position, Location and Navigation Symposium.

[23]  W. Leo,et al.  Techniques for Nuclear and Particle Physics Experiments , 1987 .

[24]  Joel W. Burdick,et al.  Team RoboSimian: Semi‐autonomous Mobile Manipulation at the 2015 DARPA Robotics Challenge Finals , 2017, J. Field Robotics.

[25]  Patrick Robertson,et al.  WiSLAM: Improving FootSLAM with WiFi , 2011, 2011 International Conference on Indoor Positioning and Indoor Navigation.

[26]  Robin R. Murphy,et al.  Dempster-Shafer theory for sensor fusion in autonomous mobile robots , 1998, IEEE Trans. Robotics Autom..

[27]  John-Olof Nilsson,et al.  Foot-mounted inertial navigation made easy , 2014, 2014 International Conference on Indoor Positioning and Indoor Navigation (IPIN).

[28]  Olivier Stasse,et al.  A versatile and efficient pattern generator for generalized legged locomotion , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[29]  Edwin Olson,et al.  Robust and efficient robotic mapping , 2008 .

[30]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[31]  Nando de Freitas,et al.  An Introduction to Sequential Monte Carlo Methods , 2001, Sequential Monte Carlo Methods in Practice.

[32]  J. S. Ortega Quaternion kinematics for the error-state KF , 2016 .

[33]  Sinziana Mazilu,et al.  ActionSLAM: Using location-related actions as landmarks in pedestrian SLAM , 2012, 2012 International Conference on Indoor Positioning and Indoor Navigation (IPIN).

[34]  Isaac Skog,et al.  Aligning the Forces—Eliminating the Misalignments in IMU Arrays , 2014, IEEE Transactions on Instrumentation and Measurement.

[35]  Thomas B. Schön,et al.  Accelerometer calibration using sensor fusion with a gyroscope , 2016, 2016 IEEE Statistical Signal Processing Workshop (SSP).

[36]  Chan Gook Park,et al.  A Calibration Technique for a Redundant IMU Containing Low‐Grade Inertial Sensors , 2005 .

[37]  Sethu Vijayakumar,et al.  Improved prosthetic hand control with concurrent use of myoelectric and inertial measurements , 2017, Journal of NeuroEngineering and Rehabilitation.

[38]  G. Reina,et al.  Adaptive Kalman Filtering for GPS-based Mobile Robot Localization , 2007, 2007 IEEE International Workshop on Safety, Security and Rescue Robotics.

[39]  R. Day,et al.  SPATIAL AFTEREFFECTS WITHIN AND BETWEEN KINESTHESIS AND VISION. , 1964, Journal of experimental psychology.

[40]  Anastasios I. Mourikis,et al.  Real-time motion tracking on a cellphone using inertial sensing and a rolling-shutter camera , 2013, 2013 IEEE International Conference on Robotics and Automation.

[41]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[42]  Soohee Han,et al.  A robust extended Kalman filtering for linearization errors , 2015, 2015 15th International Conference on Control, Automation and Systems (ICCAS).

[43]  Mohammed Khider,et al.  A high precision reference data set for pedestrian navigation using foot-mounted inertial sensors , 2010, 2010 International Conference on Indoor Positioning and Indoor Navigation.

[44]  Heinz Wörn,et al.  Development of a flexible tactile sensor system for a humanoid robot , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[45]  J. Borenstein,et al.  Personal Dead-reckoning System for GPS-denied Environments , 2007, 2007 IEEE International Workshop on Safety, Security and Rescue Robotics.

[46]  P. K. Agarwal,et al.  Wireless Monitoring and Indoor Navigation of a Mobile Robot Using RFID , 2018 .

[47]  Ian Sheret,et al.  A smart device inertial-sensing method for gait analysis. , 2014, Journal of biomechanics.

[48]  Hugh F. Durrant-Whyte,et al.  An Experimental and Theoretical Investigation into Simultaneous Localisation and Map Building , 1999, ISER.

[49]  Wolfram Burgard,et al.  An evaluation of the RGB-D SLAM system , 2012, 2012 IEEE International Conference on Robotics and Automation.

[50]  Thomas B. Schön,et al.  Indoor Positioning Using Ultrawideband and Inertial Measurements , 2015, IEEE Transactions on Vehicular Technology.

[51]  Jonathon W. Sensinger,et al.  Speed-Adaptation Mechanism: Robotic Prostheses Can Actively Regulate Joint Torque , 2014, IEEE Robotics & Automation Magazine.

[52]  Ramesh C. Jain,et al.  A nonlinear optimization algorithm for the estimation of structure and motion parameters , 1989, Proceedings CVPR '89: IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[53]  Garry A. Einicke,et al.  Robust extended Kalman filtering , 1999, IEEE Trans. Signal Process..

[54]  Hauke Strasdat,et al.  Real-time monocular SLAM: Why filter? , 2010, 2010 IEEE International Conference on Robotics and Automation.

[55]  Scott Kuindersma,et al.  Director: A User Interface Designed for Robot Operation with Shared Autonomy , 2017, J. Field Robotics.

[56]  Randall F. Lind,et al.  A mobile motion analysis system using inertial sensors for analysis of lower limb prosthetics , 2011 .

[57]  Vincenzo Lippiello,et al.  Uncalibrated Visual Servo for Unmanned Aerial Manipulation , 2017, IEEE/ASME Transactions on Mechatronics.

[58]  Olivier Stasse,et al.  Real-time 3D SLAM for Humanoid Robot considering Pattern Generator Information , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[59]  Stefano Soatto,et al.  Structure from Motion Causally Integrated Over Time , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[60]  Wolfram Burgard,et al.  Tracking multiple moving targets with a mobile robot using particle filters and statistical data association , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[61]  Shuuji Kajita,et al.  Humanoid robot HRP-2Kai — Improvement of HRP-2 towards disaster response tasks , 2015, 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids).

[62]  Imad H. Elhajj,et al.  Inertial-vision sensor fusion for pedestrian localization , 2011, 2011 IEEE International Conference on Robotics and Biomimetics.

[63]  Frank Dellaert,et al.  Incremental smoothing and mapping , 2008 .

[64]  Sangbae Kim,et al.  Online Planning for Autonomous Running Jumps Over Obstacles in High-Speed Quadrupeds , 2015, Robotics: Science and Systems.

[65]  James J. Little,et al.  Vision-based SLAM using the Rao-Blackwellised Particle Filter , 2005 .

[66]  Marko Munih,et al.  Three-Axial Accelerometer Calibration Using Kalman Filter Covariance Matrix for Online Estimation of Optimal Sensor Orientation , 2012, IEEE Transactions on Instrumentation and Measurement.

[67]  Ricardo Omar Chávez García,et al.  Multiple Sensor Fusion and Classification for Moving Object Detection and Tracking , 2016, IEEE Transactions on Intelligent Transportation Systems.

[68]  Andrew J. Davison,et al.  Real-time simultaneous localisation and mapping with a single camera , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[69]  Frank Dellaert,et al.  IMU Preintegration on Manifold for Efficient Visual-Inertial Maximum-a-Posteriori Estimation , 2015, Robotics: Science and Systems.

[70]  Salah Sukkarieh,et al.  Efficient integration of inertial observations into visual SLAM without initialization , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[71]  Patrick Robertson,et al.  Complexity-reduced FootSLAM for indoor pedestrian navigation , 2012, 2012 International Conference on Indoor Positioning and Indoor Navigation (IPIN).

[72]  Frank Dellaert,et al.  Multi-level submap based SLAM using nested dissection , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[73]  Eric Moulines,et al.  Comparison of resampling schemes for particle filtering , 2005, ISPA 2005. Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, 2005..

[74]  J. Cazalets,et al.  Is “Circling” Behavior in Humans Related to Postural Asymmetry? , 2012, PloS one.

[75]  Haruhisa Kawasaki,et al.  Dexterous anthropomorphic robot hand with distributed tactile sensor: Gifu hand II , 1999, IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.99CH37028).

[76]  Dan Simon,et al.  Ground reaction force estimation in prosthetic legs with an extended Kalman filter , 2016, 2016 Annual IEEE Systems Conference (SysCon).

[77]  G. Chirikjian Stochastic Models, Information Theory, and Lie Groups, Volume 2 , 2012 .

[78]  Rudolph van der Merwe,et al.  The unscented Kalman filter for nonlinear estimation , 2000, Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373).

[79]  Kurt Konolige,et al.  FrameSLAM: From Bundle Adjustment to Real-Time Visual Mapping , 2008, IEEE Transactions on Robotics.

[80]  Jill Whitehouse,et al.  Mosby’s Medical, Nursing and Allied Health Dictionary , 1996 .

[81]  Juan Andrade-Cetto,et al.  Factor descent optimization for sparsification in graph SLAM , 2017, 2017 European Conference on Mobile Robots (ECMR).

[82]  Yunhui Liu,et al.  Automatic calibration for inertial measurement unit , 2012, 2012 12th International Conference on Control Automation Robotics & Vision (ICARCV).

[83]  Benjamin Baruch Aisen An Inertial Measurement-Based Gait Detection System for Active Leg Prostheses , 2007 .

[84]  Isaac Skog,et al.  Calibration of a MEMS inertial measurement unit , 2006 .

[85]  Frank Dellaert,et al.  Out-of-Core Bundle Adjustment for Large-Scale 3D Reconstruction , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[86]  Fernando Seco Granja,et al.  Accurate Pedestrian Indoor Navigation by Tightly Coupling Foot-Mounted IMU and RFID Measurements , 2012, IEEE Transactions on Instrumentation and Measurement.

[87]  Jörg Raisch,et al.  Iterative learning control of a drop foot neuroprosthesis — Generating physiological foot motion in paretic gait by automatic feedback control , 2016 .

[88]  Geir Hovland,et al.  Calibration Procedure for an Inertial Measurement Unit Using a 6-Degree-of-Freedom Hexapod , 2012 .

[89]  Olive G. Young A Study of Kinesthesis in Relation to Selected Movements , 1945 .

[90]  Richard M. Murray,et al.  DISTRIBUTED SENSOR FUSION USING DYNAMIC CONSENSUS , 2005 .

[91]  Roland Siegwart,et al.  Comparing ICP variants on real-world data sets , 2013, Auton. Robots.

[92]  Olivier Stasse,et al.  TALOS: A new humanoid research platform targeted for industrial applications , 2017, 2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids).

[93]  Evangelos E. Milios,et al.  Robot Pose Estimation in Unknown Environments by Matching 2D Range Scans , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[94]  Shuuji Kajita,et al.  Constraint-based dynamics simulator for humanoid robots with shock absorbing mechanisms , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[95]  Irfan A. Essa,et al.  Propagation of innovative information in non-linear least-squares structure from motion , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[96]  Tom Drummond,et al.  Scalable Monocular SLAM , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[97]  SungHwan Ahn,et al.  On-board odometry estimation for 3D vision-based SLAM of humanoid robot , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[98]  Jesper Smith,et al.  Team IHMC's Lessons Learned from the DARPA Robotics Challenge: Finding Data in the Rubble , 2017, J. Field Robotics.

[99]  Takashi Tsubouchi,et al.  Differential GPS and odometry-based outdoor navigation of a mobile robot , 2004, Adv. Robotics.

[100]  Wolfram Burgard,et al.  G2o: A general framework for graph optimization , 2011, 2011 IEEE International Conference on Robotics and Automation.

[101]  Eduardo Rocon de Lima,et al.  Design and implementation of an inertial measurement unit for control of artificial limbs: Application on leg orthoses , 2006 .

[102]  Guy Le Besnerais,et al.  Robust indoor/outdoor navigation through magneto-visual-inertial optimization-based estimation , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[103]  Nicolas Mansard,et al.  RT-SLAM: A Generic and Real-Time Visual SLAM Implementation , 2011, ICVS.

[104]  Toshikazu Kawasaki,et al.  Design and experiments of advanced leg module (HRP-2L) for humanoid robot (HRP-2) development , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[105]  Narendra Ahuja,et al.  Optimal Motion and Structure Estimation , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[106]  Andrew W. Fitzgibbon,et al.  Bundle Adjustment - A Modern Synthesis , 1999, Workshop on Vision Algorithms.

[107]  Olivier Stasse,et al.  Multi-contact Locomotion of Legged Robots in Complex Environments – The Loco3D project , 2017 .

[108]  Ahmet M. Kondoz,et al.  Fusion of LiDAR and Camera Sensor Data for Environment Sensing in Driverless Vehicles , 2017, ArXiv.

[109]  In So Kweon,et al.  On-Line Initialization and Extrinsic Calibration of an Inertial Navigation System With a Relative Preintegration Method on Manifold , 2018, IEEE Transactions on Automation Science and Engineering.

[110]  Olivier Stasse,et al.  Odometry Based on Auto-Calibrating Inertial Measurement Unit Attached to the Feet , 2018, 2018 European Control Conference (ECC).

[111]  William Whittaker,et al.  Conditional particle filters for simultaneous mobile robot localization and people-tracking , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[112]  Michel Dhome,et al.  Generic and real-time structure from motion using local bundle adjustment , 2009, Image Vis. Comput..

[113]  Yuanxin Wu,et al.  On 'A Kalman Filter-Based Algorithm for IMU-Camera Calibration: Observability Analysis and Performance Evaluation' , 2013, ArXiv.

[114]  Sebastian Thrun,et al.  The Graph SLAM Algorithm with Applications to Large-Scale Mapping of Urban Structures , 2006, Int. J. Robotics Res..

[115]  Stergios I. Roumeliotis,et al.  Vision-Aided Inertial Navigation for Spacecraft Entry, Descent, and Landing , 2009, IEEE Transactions on Robotics.

[116]  P. Handel,et al.  Chest-mounted inertial measurement unit for pedestrian motion classification using continuous hidden Markov model , 2012, 2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings.

[117]  Loredana Zollo,et al.  Fusion of M-IMU and EMG signals for the control of trans-humeral prostheses , 2016, 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob).

[118]  Jonathan Kelly,et al.  Improving foot-mounted inertial navigation through real-time motion classification , 2017, 2017 International Conference on Indoor Positioning and Indoor Navigation (IPIN).

[119]  Minas E. Spetsakis,et al.  A multi-frame approach to visual motion perception , 1991, International Journal of Computer Vision.

[120]  Anders Robertsson,et al.  Sensor Fusion for Robotic Workspace State Estimation , 2016, IEEE/ASME Transactions on Mechatronics.

[121]  Hugh F. Durrant-Whyte,et al.  Inertial navigation systems for mobile robots , 1995, IEEE Trans. Robotics Autom..

[122]  Dinesh Atchuthan,et al.  A micro Lie theory for state estimation in robotics , 2018, ArXiv.

[123]  Juan Andrade-Cetto,et al.  Active pose SLAM with RRT* , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[124]  Nir Friedman,et al.  Probabilistic Graphical Models - Principles and Techniques , 2009 .

[125]  Harry Shum,et al.  Efficient bundle adjustment with virtual key frames: a hierarchical approach to multi-frame structure from motion , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[126]  Isaac Skog,et al.  Fusing the information from two navigation systems using an upper bound on their maximum spatial separation , 2012, 2012 International Conference on Indoor Positioning and Indoor Navigation (IPIN).

[127]  Maani Ghaffari Jadidi,et al.  Hybrid Contact Preintegration for Visual-Inertial-Contact State Estimation Using Factor Graphs , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[128]  Olivier Stasse,et al.  Optimal control for whole-body motion generation using center-of-mass dynamics for predefined multi-contact configurations , 2015, 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids).

[129]  K. Dietmayer,et al.  DATA SYNCHRONIZATION STRATEGIES FOR MULTI-SENSOR FUSION , 2003 .

[130]  Sreenatha G. Anavatti,et al.  Visual–Inertial Navigation Systems for Aerial Robotics: Sensor Fusion and Technology , 2017, IEEE Transactions on Automation Science and Engineering.

[131]  Jean-Philippe Condomines,et al.  Unscented Kalman filtering on Lie groups , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[132]  Wolfram Burgard,et al.  A Tree Parameterization for Efficiently Computing Maximum Likelihood Maps using Gradient Descent , 2007, Robotics: Science and Systems.

[133]  Takashi Tsubouchi,et al.  Outdoor navigation of a mobile robot between buildings based on DGPS and odometry data fusion , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[134]  Frédéric Lerasle,et al.  Vision and RFID data fusion for tracking people in crowds by a mobile robot , 2010, Comput. Vis. Image Underst..

[135]  Lawrence A. Klein,et al.  Sensor and Data Fusion: A Tool for Information Assessment and Decision Making , 2004 .

[136]  Richard Szeliski,et al.  Recovering 3D shape and motion from image streams using nonlinear least squares , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[137]  J. Moreno,et al.  The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study , 2015, Journal of NeuroEngineering and Rehabilitation.

[138]  Juan Andrade-Cetto,et al.  Graph SLAM Sparsification With Populated Topologies Using Factor Descent Optimization , 2018, IEEE Robotics and Automation Letters.

[139]  J. Oliensis,et al.  Incorporating motion error in multi-frame structure from motion , 1991, Proceedings of the IEEE Workshop on Visual Motion.

[140]  Dimitris P. Tsakiris,et al.  Applying Visual Servoing Techniques to Control Nonholonomic Mobile Robots , 1997 .

[141]  Giuseppe Loianno,et al.  Autonomous navigation of micro aerial vehicles using high-rate and low-cost sensors , 2017, Autonomous Robots.

[142]  Nicholas Rotella,et al.  Inertial sensor-based humanoid joint state estimation , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[143]  Wolfram Burgard,et al.  Improved Techniques for Grid Mapping With Rao-Blackwellized Particle Filters , 2007, IEEE Transactions on Robotics.

[144]  Michael Bosse,et al.  Keyframe-based visual–inertial odometry using nonlinear optimization , 2015, Int. J. Robotics Res..

[145]  William Brett Johnson,et al.  Walking mechanics of persons who use reciprocating gait orthoses. , 2009, Journal of rehabilitation research and development.

[146]  Aaron D. Ames,et al.  Multicontact Locomotion on Transfemoral Prostheses via Hybrid System Models and Optimization-Based Control , 2016, IEEE Transactions on Automation Science and Engineering.

[147]  Andrew Y. C. Nee,et al.  Methods for in-field user calibration of an inertial measurement unit without external equipment , 2008 .

[148]  Pietro Perona,et al.  Recursive motion and structure estimation with complete error characterization , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[149]  Frank Dellaert,et al.  On-Manifold Preintegration for Real-Time Visual--Inertial Odometry , 2015, IEEE Transactions on Robotics.

[150]  Yi Liu,et al.  Monocular Visual-Inertial SLAM: Continuous Preintegration and Reliable Initialization , 2017, Sensors.

[151]  Thomas Seel,et al.  IMU-Based Joint Angle Measurement for Gait Analysis , 2014, Sensors.

[152]  Frank Dellaert,et al.  iSAM: Incremental Smoothing and Mapping , 2008, IEEE Transactions on Robotics.

[153]  Seth J. Teller,et al.  Drift-free humanoid state estimation fusing kinematic, inertial and LIDAR sensing , 2014, 2014 IEEE-RAS International Conference on Humanoid Robots.