Relations between entanglement and purity in non-Markovian dynamics

Knowledge of the relationships among different features of quantumness, like entanglement and state purity, is important from both fundamental and practical viewpoints. Yet, this issue remains little explored in dynamical contexts for open quantum systems. We address this problem by studying the dynamics of entanglement and purity for two-qubit systems using paradigmatic models of radiation-matter interaction, with a qubit being isolated from the environment (spectator configuration). We show the effects of the corresponding local quantum channels on an initial two-qubit pure entangled state in the concurrence–purity diagram and find the conditions which enable dynamical closed formulas of concurrence, used to quantify entanglement, as a function of purity. We finally discuss the usefulness of these relations in assessing entanglement and purity thresholds which allow noisy quantum teleportation. Our results provide new insights about how different properties of composite open quantum systems behave and relate each other during quantum evolutions.

[1]  L. Aolita,et al.  Open-system dynamics of entanglement:a key issues review , 2014, Reports on progress in physics. Physical Society.

[2]  J. C. Retamal,et al.  Sudden birth versus sudden death of entanglement in multipartite systems. , 2008, Physical review letters.

[3]  U. Sen,et al.  Cumulative quantum work-deficit versus entanglement in the dynamics of an infinite spin chain , 2013, 1307.1419.

[4]  Mauro Paternostro,et al.  Linear Optics Simulation of Quantum Non-Markovian Dynamics , 2012, Scientific Reports.

[5]  J. Eberly,et al.  Coherent-state control of noninteracting quantum entanglement , 2009, 0909.0946.

[6]  S. Filipp,et al.  Cavity quantum electrodynamics with separate photon storage and qubit readout modes. , 2009, Physical review letters.

[7]  Leonard Susskind,et al.  Quantum mechanical phase and time operator , 1964 .

[8]  Giuseppe Compagno,et al.  Preserving entanglement and nonlocality in solid-state qubits by dynamical decoupling , 2014, 1408.6881.

[9]  L. DiCarlo,et al.  Demonstration of two-qubit algorithms with a superconducting quantum processor , 2009, Nature.

[10]  Nicolaas P. Landsman Decoherence and the quantum-to-classical transition , 2009 .

[11]  A. Shaham,et al.  Entanglement dynamics in the presence of controlled unital noise , 2014, Scientific Reports.

[12]  A study on the sudden death of entanglement , 2006, quant-ph/0612145.

[13]  Yihang Nie,et al.  Time evolution and transfer of entanglement between an isolated atom and a Jaynes–Cummings atom , 2007 .

[14]  M. Lewenstein,et al.  Dynamical phase transitions and temperature-induced quantum correlations in an infinite spin chain , 2005, quant-ph/0505006.

[15]  T. Seligman,et al.  Two interacting atoms in a cavity: exact solutions, entanglement and decoherence , 2009, 0911.3954.

[16]  J. C. Retamal,et al.  Dynamics of entanglement transfer through multipartite dissipative systems , 2010, 1007.1951.

[17]  Rosario Lo Franco,et al.  Harnessing non-Markovian quantum memory by environmental coupling , 2015, 1506.08293.

[18]  G. Alber,et al.  Unambiguous atomic Bell measurement assisted by multiphoton states , 2015, 1506.04076.

[19]  Hector Moya-Cessa,et al.  Decoherence in atom–field interactions: A treatment using superoperator techniques , 2006 .

[20]  E. Andersson,et al.  Dynamics of correlations due to a phase-noisy laser , 2011, 1111.0917.

[21]  Zhong-Xiao Man,et al.  Cavity-based architecture to preserve quantum coherence and entanglement , 2015, Scientific Reports.

[22]  G. Compagno,et al.  Entanglement dynamics of two independent cavity-embedded quantum dots , 2010, 1011.4862.

[23]  G. Falci,et al.  Initial decoherence in solid state qubits. , 2005, Physical review letters.

[24]  T. Yu,et al.  Finite-time disentanglement via spontaneous emission. , 2004, Physical review letters.

[25]  T. Hiroshima,et al.  Maximally entangled mixed states under nonlocal unitary operations in two qubits , 2000 .

[26]  T. Yu,et al.  Sudden Death of Entanglement , 2009, Science.

[27]  L. Roa,et al.  Entanglement-swapping for X-states demands threshold values , 2013, 1311.6784.

[28]  V. Vedral,et al.  Entanglement in many-body systems , 2007, quant-ph/0703044.

[29]  Fabio Sciarrino,et al.  Experimental on-demand recovery of entanglement by local operations within non-Markovian dynamics , 2014, Scientific Reports.

[30]  J. Dowling Exploring the Quantum: Atoms, Cavities, and Photons. , 2014 .

[31]  E Solano,et al.  Dynamical Casimir effect entangles artificial atoms. , 2014, Physical review letters.

[32]  S. Maniscalco,et al.  DYNAMICS OF QUANTUM CORRELATIONS IN TWO-QUBIT SYSTEMS WITHIN NON-MARKOVIAN ENVIRONMENTS , 2012, 1205.6419.

[33]  L. Roa,et al.  Entanglement thresholds for displaying the quantum nature of teleportation , 2015, 1508.01417.

[34]  Giuseppe Compagno,et al.  Entanglement Trapping in Structured Environments , 2008, 0805.3056.

[35]  Yoon-Ho Kim,et al.  Avoiding entanglement sudden death using single-qubit quantum measurement reversal. , 2014, Optics express.

[36]  E Solano,et al.  Ultrafast quantum gates in circuit QED. , 2011, Physical review letters.

[37]  F. W. Cummings,et al.  Exact Solution for an N-Molecule-Radiation-Field Hamiltonian , 1968 .

[38]  Giuseppe Compagno,et al.  Entanglement dynamics in superconducting qubits affected by local bistable impurities , 2012, 1408.6887.

[39]  J. Eberly,et al.  Qubit entanglement driven by remote optical fields. , 2007, Optics letters.

[40]  M. Nielsen,et al.  Entanglement in a simple quantum phase transition , 2002, quant-ph/0202162.

[41]  J. Clemens,et al.  Multipartite Entanglement in Cavity QED , 2006 .

[42]  J. Cirac,et al.  Entanglement percolation in quantum networks , 2006, quant-ph/0612167.

[43]  Guang-Can Guo,et al.  Experimental recovery of quantum correlations in absence of system-environment back-action , 2013, Nature Communications.

[44]  T. Gorin,et al.  Decoherence of two-qubit systems: a random matrix description , 2007 .

[45]  Karolin Papst Principles Of Quantum Computation And Information , 2016 .

[46]  U. Sen,et al.  Information complementarity in multipartite quantum states and security in cryptography , 2015, 1509.07777.

[47]  G. Falci,et al.  Recovering entanglement by local operations , 2012, 1207.3294.

[48]  G. Compagno,et al.  Long-time preservation of nonlocal entanglement , 2008, 0810.2783.

[49]  S. Huelga,et al.  Quantum non-Markovianity: characterization, quantification and detection , 2014, Reports on progress in physics. Physical Society.

[50]  Meng Qin,et al.  Relations between quantum correlations, purity and teleportation fidelity for the two-qubit Heisenberg XYZ system , 2014, Quantum Inf. Process..

[51]  Giuseppe Compagno,et al.  Two-qubit entanglement dynamics for two different non-Markovian environments , 2009, 0910.0050.

[52]  J Laurat,et al.  Heralded entanglement between atomic ensembles: preparation, decoherence, and scaling. , 2007, Physical review letters.

[53]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[54]  S. Filipp,et al.  Dressed collective qubit states and the Tavis-Cummings model in circuit QED. , 2008, Physical review letters.

[55]  M. P. Almeida,et al.  Environment-Induced Sudden Death of Entanglement , 2007, Science.

[56]  Gerardo Adesso,et al.  Universal freezing of quantum correlations within the geometric approach , 2014, Scientific Reports.

[57]  G. Compagno,et al.  Non-markovian effects on the dynamics of entanglement. , 2007, Physical review letters.

[58]  B. Buck,et al.  Exactly soluble model of atom-phonon coupling showing periodic decay and revival , 1981 .

[59]  E. Villaseñor,et al.  Stabilizing coherence with nested environments: a numerical study using kicked Ising models , 2015, 1512.07683.

[60]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[61]  Pawel Horodecki,et al.  Distributed correlations and information flows within a hybrid multipartite quantum-classical system , 2015 .

[62]  Mario Ziman,et al.  Concurrence versus purity: Influence of local channels on Bell states of two qubits , 2005 .

[63]  G. Compagno,et al.  Connection among entanglement, mixedness, and nonlocality in a dynamical context , 2010, 1003.5153.