Harnessing nonlinearities near material absorption resonances for reducing losses in plasmonic modulators

The electro-optic coefficient (Pockels coefficient) is largest around the absorption resonance of a material. Here, we show that the overall losses, the power consumption and the footprint of plasmonic electro-optic modulators can be reduced when a device is operated in the vicinity of absorption resonances of an electro-optical material. This near-resonant operation in plasmonics is contrary to what is known from photonics where off-resonant operation is required to minimize the overall losses. The findings are supported by experiments demonstrating a reduction in voltage-length product by a factor of 3 and a reduction in loss by a factor 2 when operating a plasmonic modulator near resonance compared to off-resonant.

[1]  Harry A Atwater,et al.  PlasMOStor: a metal-oxide-Si field effect plasmonic modulator. , 2009, Nano letters.

[2]  Ying Luo,et al.  30GHz Ge electro-absorption modulator integrated with 3 μm silicon-on-insulator waveguide. , 2011, Optics express.

[3]  P. Gothoskar,et al.  An efficient MOS-capacitor based silicon modulator and CMOS drivers for optical transmitters , 2014, 11th International Conference on Group IV Photonics (GFP).

[4]  Juerg Leuthold,et al.  Effect of Rigid Bridge-Protection Units, Quadrupolar Interactions, and Blending in Organic Electro-Optic Chromophores , 2017 .

[5]  C. Burrus,et al.  Band-Edge Electroabsorption in Quantum Well Structures: The Quantum-Confined Stark Effect , 1984 .

[6]  Larry R. Dalton,et al.  Polymeric Electro-optic Modulators: From Chromophore Design to Integration with Semiconductor Very Large Scale Integration Electronics and Silica Fiber Optics , 1999 .

[7]  Zhipei Sun Optical modulators with two-dimensional layered materials , 2016, 2016 Progress in Electromagnetic Research Symposium (PIERS).

[8]  Bruce H. Robinson,et al.  Matrix-Assisted Poling of Monolithic Bridge-Disubstituted Organic NLO Chromophores , 2014 .

[9]  Chen Sun,et al.  A Monolithically-Integrated Chip-to-Chip Optical Link in Bulk CMOS , 2015, IEEE J. Solid State Circuits.

[10]  Larry R. Dalton,et al.  Guest-Host Cooperativity in Organic Materials Greatly Enhances the Nonlinear Optical Response , 2008 .

[11]  R. Lytel,et al.  Fundamental limits on the electro-optic device figure of merit , 2016, 1607.06052.

[12]  David Hillerkuss,et al.  All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale , 2015, Nature Photonics.

[13]  Jinzhong Yu,et al.  High-speed silicon modulator with band equalization. , 2014, Optics letters.

[14]  Min Qiu,et al.  Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface , 2009 .

[15]  Yongbo Tang,et al.  Over 67 GHz bandwidth hybrid silicon electroabsorption modulator with asymmetric segmented electrode for 1.3 μm transmission. , 2012, Optics express.

[16]  Jens H. Schmid,et al.  Roadmap on silicon photonics , 2016 .

[17]  A. Roberts,et al.  Plasmonic circuits for manipulating optical information , 2016 .

[18]  X. Zhang,et al.  Ultra-compact silicon nanophotonic modulator with broadband response , 2012 .

[19]  Zhipei Sun,et al.  Optical modulators with 2 D layered materials , 2016 .

[20]  D. Gramotnev,et al.  Plasmonics beyond the diffraction limit , 2010 .

[21]  David A. B. Miller Attojoule Optoelectronics for Low-Energy Information Processing and Communications , 2017, Journal of Lightwave Technology.

[22]  David J. Thomson,et al.  Silicon optical modulators , 2010 .

[23]  David Hillerkuss,et al.  Direct Conversion of Free Space Millimeter Waves to Optical Domain by Plasmonic Modulator Antenna , 2015, Nano letters.

[24]  Raluca Dinu,et al.  High-speed plasmonic phase modulators , 2014, Nature Photonics.

[25]  Jingdong Luo,et al.  Analysis of efficiently poled electro-optic polymer/Tio2 vertical slot waveguide modulators , 2016 .

[26]  Alexander D. Q. Li,et al.  Use of quadratic electroabsorption for measurement of the hyperpolarizability β of asymmetric molecules , 2005 .

[27]  Wolfgang Freude,et al.  Femtojoule electro-optic modulation using a silicon–organic hybrid device , 2015, Light: Science & Applications.

[28]  A. Biberman,et al.  An ultralow power athermal silicon modulator , 2014, Nature Communications.

[29]  Raluca Dinu,et al.  Silicon-Organic Hybrid Electro-Optical Devices , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[30]  D Hillerkuss,et al.  Plasmonic modulator with >170 GHz bandwidth demonstrated at 100 GBd NRZ. , 2017, Optics express.

[31]  Vladimir M. Shalaev,et al.  Examining nanophotonics for integrated hybrid systems: a review of plasmonic interconnects and modulators using traditional and alternative materials [Invited] , 2015 .

[32]  David Hillerkuss,et al.  Plasmonic Organic Hybrid Modulators—Scaling Highest Speed Photonics to the Microscale , 2016, Proceedings of the IEEE.

[33]  Harry A. Atwater The promise of plasmonics. , 2007 .

[34]  D. Hillerkuss,et al.  108 Gbit/s Plasmonic Mach–Zehnder Modulator with > 70-GHz Electrical Bandwidth , 2016, Journal of Lightwave Technology.

[35]  Mitsuru Takenaka,et al.  High-efficiency O-band Mach-Zehnder modulator based on InGaAsP/Si hybrid MOS capacitor , 2017, 2017 Optical Fiber Communications Conference and Exhibition (OFC).

[36]  M. Morse,et al.  High speed silicon Mach-Zehnder modulator. , 2005, Optics express.

[37]  Ulf Peschel,et al.  Nanoscale conducting oxide PlasMOStor. , 2014, Nano letters.

[38]  D Hillerkuss,et al.  High speed plasmonic modulator array enabling dense optical interconnect solutions. , 2015, Optics express.

[39]  David A B Miller,et al.  Energy consumption in optical modulators for interconnects. , 2012, Optics express.

[40]  Joel R. Wendt,et al.  Multi-gigabit operation of a compact, broadband modulator based on ENZ confinement in indium oxide , 2017, 2017 Optical Fiber Communications Conference and Exhibition (OFC).

[41]  Larry R. Dalton,et al.  Introduction to Organic Electronic and Optoelectronic Materials and Devices (Optical Science and Engineering Series) , 2008 .

[42]  Michael Hochberg,et al.  High-Q Optical Resonators in Silicon-on-Insulator-Based Slot Waveguides , 2005 .

[43]  Jingdong Luo,et al.  Terahertz all-optical modulation in a silicon–polymer hybrid system , 2006, Nature materials.

[44]  I. Malitson Interspecimen Comparison of the Refractive Index of Fused Silica , 1965 .

[45]  Qianfan Xu,et al.  Micrometre-scale silicon electro-optic modulator , 2005, Nature.

[46]  Lech Wosinski,et al.  Hollow hybrid plasmonic Mach-Zehnder sensor. , 2017, Optics letters.

[47]  Rajeev J. Ram,et al.  Single-chip microprocessor that communicates directly using light , 2015, Nature.

[48]  Juerg Leuthold,et al.  Nonlinearities of organic electro-optic materials in nanoscale slots and implications for the optimum modulator design. , 2017, Optics express.

[49]  Harry A Atwater,et al.  The promise of plasmonics , 2007, SIGD.

[50]  N. Wada,et al.  2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb , 2015, 2015 European Conference on Optical Communication (ECOC).

[51]  Ruimin Xu,et al.  Structure–function relationship exploration for enhanced thermal stability and electro-optic activity in monolithic organic NLO chromophores , 2016 .