Structure−Property Relationships in Third-Order Nonlinear Optical Chromophores

Scientists have sought for over two decades to incorporate the necessary attributes of transparency, stability, and high nonlinear susceptibilities into optimized organic or organometallic chromophores for third-order nonlinear optical (NLO) applications. These investigations have provided an ever-expanding understanding of structure−function relationships for the second hyperpolarizability γ and the bulk third-order nonlinear optical susceptibility χ(3) in organic materials, which are reviewed herein. Contributing to this understanding are the studies of the third-order NLO properties displayed by an array of structurally related organic chromophores based on the conjugated carbon skeletons of hex-3-ene-1,5-diynes (1,2-diethynylethenes, DEEs) and 3,4-diethynylhex-3-ene-1,5-diynes (tetraethynylethenes, TEEs). A comprehensive series of donor (D) and/or acceptor (A) substituted derivatives of DEEs and TEEs has been measured by third-harmonic generation (THG) experiments, and the investigations on these one-...