Targeting the N terminus for site-selective protein modification.

The formation of well-defined protein bioconjugates is critical for many studies and technologies in chemical biology. Tried-and-true methods for accomplishing this typically involve the targeting of cysteine residues, but the rapid growth of contemporary bioconjugate applications has required an expanded repertoire of modification techniques. One very powerful set of strategies involves the modification of proteins at their N termini, as these positions are typically solvent exposed and provide chemically distinct sites for many protein targets. Several chemical techniques can be used to modify N-terminal amino acids directly or convert them into unique functional groups for further ligations. A growing number of N-terminus-specific enzymatic ligation strategies have provided additional possibilities. This Perspective provides an overview of N-terminal modification techniques and the chemical rationale governing each. Examples of specific N-terminal protein conjugates are provided, along with their uses in a number of diverse biological applications.

[1]  Allie C. Obermeyer,et al.  N-Terminal Modification of Proteins with o-Aminophenols , 2014, Journal of the American Chemical Society.

[2]  C. Mant,et al.  Effect of the α-amino group on peptide retention behaviour in reversed-phase chromatography Determination of the pKa values of the α-amino group of 19 different N-terminal amino acid residues , 1993 .

[3]  M. Francis,et al.  Metallothionein-cross-linked hydrogels for the selective removal of heavy metals from water. , 2008, Journal of the American Chemical Society.

[4]  E. Schuman,et al.  Mutant methionyl-tRNA synthetase from bacteria enables site-selective N-terminal labeling of proteins expressed in mammalian cells , 2013, Proceedings of the National Academy of Sciences.

[5]  E. Isacoff,et al.  Allosteric control of an ionotropic glutamate receptor with an optical switch , 2006, Nature chemical biology.

[6]  Amanda P. Crochet,et al.  Site-selective dual modification of periplasmic binding proteins for sensing applications. , 2010, Biosensors & bioelectronics.

[7]  J. Berger,et al.  Nanoscale protein assemblies from a circular permutant of the tobacco mosaic virus. , 2010, Nano letters.

[8]  K. Geoghegan,et al.  Site-directed conjugation of nonpeptide groups to peptides and proteins via periodate oxidation of a 2-amino alcohol. Application to modification at N-terminal serine. , 1992, Bioconjugate chemistry.

[9]  K. Christman,et al.  Site-specific protein immobilization through N-terminal oxime linkages , 2007 .

[10]  A. Kossiakoff,et al.  Engineering subtilisin and its substrates for efficient ligation of peptide bonds in aqueous solution. , 1991, Biochemistry.

[11]  P. Janmey,et al.  Polyacrylamide hydrogels for cell mechanics: steps toward optimization and alternative uses. , 2007, Methods in cell biology.

[12]  M. Webb,et al.  Efficient N-terminal labeling of proteins by use of sortase. , 2012, Angewandte Chemie.

[13]  Jonathan H. Esensten,et al.  Circulating proteolytic signatures of chemotherapy-induced cell death in humans discovered by N-terminal labeling , 2014, Proceedings of the National Academy of Sciences.

[14]  A. Heck,et al.  Metal-free and pH-controlled introduction of azides in proteins , 2011 .

[15]  K. Johnsson,et al.  Imaging and manipulating proteins in live cells through covalent labeling. , 2015, Nature chemical biology.

[16]  Jan C M van Hest,et al.  Sortase A-Mediated N-Terminal Modification of Cowpea Chlorotic Mottle Virus for Highly Efficient Cargo Loading. , 2015, Bioconjugate chemistry.

[17]  P. Turecek,et al.  PEGylation of Biopharmaceuticals: A Review of Chemistry and Nonclinical Safety Information of Approved Drugs. , 2016, Journal of pharmaceutical sciences.

[18]  H. Ploegh,et al.  Chemical probes for the rapid detection of Fatty-acylated proteins in Mammalian cells. , 2007, Journal of the American Chemical Society.

[19]  J. Tam,et al.  A new ligation method for N-terminal tryptophan-containing peptides using the Pictet–Spengler reaction , 2000 .

[20]  Emmanuel Baslé,et al.  Protein chemical modification on endogenous amino acids. , 2010, Chemistry & biology.

[21]  Jianghong Rao,et al.  A biocompatible condensation reaction for controlled assembly of nanostructures in live cells , 2010, Nature chemistry.

[22]  G von Heijne,et al.  Structures of N-terminally acetylated proteins. , 1985, European journal of biochemistry.

[23]  Tsutomu Tanaka,et al.  N‐terminal glycine‐specific protein conjugation catalyzed by microbial transglutaminase , 2005, FEBS letters.

[24]  Neel S. Joshi,et al.  N-terminal protein modification through a biomimetic transamination reaction. , 2006, Angewandte Chemie.

[25]  J. Tam,et al.  Butelase 1 is an Asx-specific ligase enabling peptide macrocyclization and synthesis. , 2014, Nature chemical biology.

[26]  H. Dixon,et al.  [33] Specific modification of NH(2)-terminal residues by transamination. , 1972, Methods in enzymology.

[27]  Emmanuelle Thinon,et al.  Multifunctional protein labeling via enzymatic N-terminal tagging and elaboration by click chemistry , 2011, Nature Protocols.

[28]  M. Francis,et al.  Synthetically modified Fc domains as building blocks for immunotherapy applications , 2013 .

[29]  M. Salit,et al.  In Vivo Site-Specific Protein Tagging with Diverse Amines Using an Engineered Sortase Variant. , 2016, Journal of the American Chemical Society.

[30]  H. Zou,et al.  A peptide N-terminal protection strategy for comprehensive glycoproteome analysis using hydrazide chemistry based method , 2015, Scientific Reports.

[31]  Tom W Muir,et al.  Protein ligation: an enabling technology for the biophysical analysis of proteins , 2006, Nature Methods.

[32]  M. Francis,et al.  Recyclable thermoresponsive polymer-cellulase bioconjugates for biomass depolymerization. , 2013, Journal of the American Chemical Society.

[33]  Carla P. Guimarães,et al.  Site-specific N-terminal labeling of proteins using sortase-mediated reactions , 2013, Nature Protocols.

[34]  J. Rao,et al.  A biocompatible condensation reaction for the labeling of terminal cysteine residues on proteins. , 2009, Angewandte Chemie.

[35]  M. Ye,et al.  N-terminal labeling of peptides by trypsin-catalyzed ligation for quantitative proteomics. , 2013, Angewandte Chemie.

[36]  V. Bajaj,et al.  Molecular imaging of cancer cells using a bacteriophage-based 129Xe NMR biosensor. , 2013, Angewandte Chemie.

[37]  U. Schepers,et al.  Bioconjugation via azide-Staudinger ligation: an overview. , 2011, Chemical Society reviews.

[38]  Carolyn R. Bertozzi,et al.  Copper-free click chemistry for dynamic in vivo imaging , 2007, Proceedings of the National Academy of Sciences.

[39]  B. Helk,et al.  Conjugation of PolyPEG to interferon alpha extends serum half-life while maintaining low viscosity of the conjugate. , 2015, Bioconjugate chemistry.

[40]  Troy Moore,et al.  One-step site-specific modification of native proteins with 2-pyridinecarboxyaldehydes. , 2015, Nature chemical biology.

[41]  J. Gordon,et al.  The biology and enzymology of eukaryotic protein acylation. , 1988, Annual review of biochemistry.

[42]  Jason W. Chin,et al.  Selective, rapid and optically switchable regulation of protein function in live mammalian cells. , 2015, Nature chemistry.

[43]  F. Sherman,et al.  N-terminal acetyltransferases and sequence requirements for N-terminal acetylation of eukaryotic proteins. , 2003, Journal of molecular biology.

[44]  John M. Beierle,et al.  Reversible photocontrol of biological systems by the incorporation of molecular photoswitches. , 2013, Chemical reviews.

[45]  Gonçalo J L Bernardes,et al.  Advances in chemical protein modification. , 2015, Chemical reviews.

[46]  Matthew B Francis,et al.  Optimization and expansion of a site-selective N-methylpyridinium-4-carboxaldehyde-mediated transamination for bacterially expressed proteins. , 2015, Journal of the American Chemical Society.

[47]  Harshal A. Chokhawala,et al.  N-Terminal labeling of filamentous phage to create cancer marker imaging agents. , 2012, ACS nano.

[48]  Hidde L. Ploegh,et al.  Site-Specific N- and C-Terminal Labeling of a Single Polypeptide Using Sortases of Different Specificity , 2009, Journal of the American Chemical Society.

[49]  P. Dawson,et al.  Enhanced catalysis of oxime-based bioconjugations by substituted anilines. , 2014, Bioconjugate chemistry.

[50]  Sanjay Kumar,et al.  N-terminal specific conjugation of extracellular matrix proteins to 2-pyridinecarboxaldehyde functionalized polyacrylamide hydrogels. , 2016, Biomaterials.

[51]  Colin M. Fadzen,et al.  Labeling proteins with fluorophore/thioamide Förster resonant energy transfer pairs by combining unnatural amino acid mutagenesis and native chemical ligation. , 2013, Journal of the American Chemical Society.

[52]  Jack F Kirsch,et al.  Pyridoxal phosphate enzymes: mechanistic, structural, and evolutionary considerations. , 2003, Annual review of biochemistry.

[53]  T. Arnesen,et al.  N-terminal modifications of cellular proteins: The enzymes involved, their substrate specificities and biological effects , 2015, Proteomics.

[54]  T. Muir,et al.  Chemical tagging and customizing of cellular chromatin states using ultrafast trans-splicing inteins , 2015, Nature chemistry.

[55]  Carla P. Guimarães,et al.  Site-Specific Chemoenzymatic Labeling of Aerolysin Enables the Identification of New Aerolysin Receptors , 2014, PloS one.

[56]  J. Lambert,et al.  New developments for antibody-drug conjugate-based therapeutic approaches. , 2016, Current opinion in immunology.

[57]  Mingzi M. Zhang,et al.  Robust fluorescent detection of protein fatty-acylation with chemical reporters. , 2009, Journal of the American Chemical Society.

[58]  Hidde L Ploegh,et al.  Sortagging: a versatile method for protein labeling. , 2007, Nature chemical biology.

[59]  S. Mazmanian,et al.  Purification and characterization of sortase, the transpeptidase that cleaves surface proteins of Staphylococcus aureus at the LPXTG motif. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[60]  R. Doolittle Redundancies in Protein Sequences , 1989 .

[61]  Ron Unger,et al.  A tale of two tails: why are terminal residues of proteins exposed? , 2007, Bioinform..

[62]  Peter Kuhn,et al.  Site-specific DNA-antibody conjugates for specific and sensitive immuno-PCR , 2012, Proceedings of the National Academy of Sciences.

[63]  A. Whitty,et al.  N-terminally PEGylated human interferon-beta-1a with improved pharmacokinetic properties and in vivo efficacy in a melanoma angiogenesis model. , 2006, Bioconjugate chemistry.

[64]  H. Ploegh,et al.  Making and breaking peptide bonds: protein engineering using sortase. , 2011, Angewandte Chemie.

[65]  M. Distefano,et al.  Site-Specific PEGylation of Therapeutic Proteins , 2015, International journal of molecular sciences.

[66]  Carla P. Guimarães,et al.  Site-specific C-terminal and internal loop labeling of proteins using sortase-mediated reactions , 2013, Nature Protocols.

[67]  F. Veronese,et al.  Site-specific modification and PEGylation of pharmaceutical proteins mediated by transglutaminase. , 2008, Advanced drug delivery reviews.

[68]  M. Francis,et al.  Site-specific protein transamination using N-methylpyridinium-4-carboxaldehyde. , 2013, Journal of the American Chemical Society.

[69]  J. Klose,et al.  Synthesis of biologically active peptide nucleic acid-peptide conjugates by sortase-mediated ligation. , 2007, The Journal of organic chemistry.

[70]  D. D. De Souza,et al.  Direct production of proteins with N-terminal cysteine for site-specific conjugation. , 2004, Bioconjugate chemistry.

[71]  Emil H. White,et al.  THE STRUCTURE AND SYNTHESIS OF FIREFLY LUCIFERIN , 1961 .

[72]  S. Schreiber,et al.  Biased combinatorial libraries: novel ligands for the SH3 domain of phosphatidylinositol 3-kinase , 1993 .

[73]  Estela Haldón,et al.  Copper-catalysed azide-alkyne cycloadditions (CuAAC): an update. , 2015, Organic & biomolecular chemistry.

[74]  Y. Leung,et al.  Modification of N-terminal α-amino groups of peptides and proteins using ketenes. , 2012, Journal of the American Chemical Society.

[75]  J. Rao,et al.  Efficient method for site-specific 18F-labeling of biomolecules using the rapid condensation reaction between 2-cyanobenzothiazole and cysteine. , 2012, Bioconjugate chemistry.

[76]  S. Kent Total chemical synthesis of proteins. , 2009, Chemical Society reviews.

[77]  Sjoerd Dirksen,et al.  Nucleophilic catalysis of hydrazone formation and transimination: implications for dynamic covalent chemistry. , 2006, Journal of the American Chemical Society.

[78]  Ronald T Raines,et al.  Hydrolytic stability of hydrazones and oximes. , 2008, Angewandte Chemie.

[79]  U. Schepers,et al.  Bioconjugation via Azide—Staudinger Ligation: An Overview , 2011 .

[80]  Pedro M. P. Gois,et al.  Iminoboronates are efficient intermediates for selective, rapid and reversible N-terminal cysteine functionalisation† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc01520d , 2016, Chemical science.

[81]  H. Bayley,et al.  Protein Detection by Nanopores Equipped with Aptamers , 2012, Journal of the American Chemical Society.

[82]  T. Muir,et al.  Genetically encoded 1,2-aminothiols facilitate rapid and site-specific protein labeling via a bio-orthogonal cyanobenzothiazole condensation. , 2011, Journal of the American Chemical Society.

[83]  R. Woscholski,et al.  Specific N-terminal protein labelling: use of FMDV 3C pro protease and native chemical ligation. , 2008, Chemical communications.

[84]  Benjamin W. Thuronyi,et al.  Identification of highly reactive sequences for PLP-mediated bioconjugation using a combinatorial peptide library. , 2010, Journal of the American Chemical Society.

[85]  C. Bertozzi,et al.  Systemic Fluorescence Imaging of Zebrafish Glycans with Bioorthogonal Chemistry. , 2015, Angewandte Chemie.

[86]  J. Tam,et al.  Thiazolidine formation as a general and site-specific conjugation method for synthetic peptides and proteins. , 1996, Analytical biochemistry.

[87]  M. Francis,et al.  Protein-cross-linked polymeric materials through site-selective bioconjugation. , 2008, Angewandte Chemie.

[88]  Shu-Ting Chang,et al.  Removal of N‐terminal methionine from recombinant proteins by engineered E. coli methionine aminopeptidase , 2004, Protein science : a publication of the Protein Society.

[89]  R. Hendrickson,et al.  Erythropoietin Derived by Chemical Synthesis , 2013, Science.

[90]  P. Arora,et al.  Aldehyde capture ligation for synthesis of native peptide bonds. , 2015, Journal of the American Chemical Society.

[91]  S. Hart,et al.  Sortase-mediated protein ligation: a new method for protein engineering. , 2004, Journal of the American Chemical Society.

[92]  F. Bordusa Proteases in organic synthesis. , 2002, Chemical reviews.

[93]  E. Snell The vitamin B6 group. 5. The reversible interconversion of pyridoxal and pyridoxamine by transamination reaction. , 1945 .

[94]  Teruyuki Nagamune,et al.  Sortase‐Mediated Ligation: A Gift from Gram‐Positive Bacteria to Protein Engineering , 2009, Chembiochem : a European journal of chemical biology.

[95]  Wei Wang,et al.  Site-Specific N-Terminal Labeling of Peptides and Proteins using Butelase 1 and Thiodepsipeptide. , 2015, Angewandte Chemie.

[96]  David T. Barkan,et al.  Global Sequencing of Proteolytic Cleavage Sites in Apoptosis by Specific Labeling of Protein N Termini , 2008, Cell.

[97]  M. Fascione,et al.  Site-selective incorporation and ligation of protein aldehydes. , 2016, Organic & biomolecular chemistry.

[98]  A. Bandyopadhyay,et al.  Fast and selective labeling of N-terminal cysteines at neutral pH via thiazolidino boronate formation , 2016, Chemical science.