A Systematic Relationship Between Functional Connectivity and Intracortical Myelin in the Human Cerebral Cortex

Abstract Research in the macaque monkey suggests that cortical areas with similar microstructure are more likely to be connected. Here, we examine this link in the human cerebral cortex using 2 magnetic resonance imaging (MRI) measures: quantitative T1 maps, which are sensitive to intracortical myelin content and provide an in vivo proxy for cortical microstructure, and resting‐state functional connectivity. Using ultrahigh‐resolution MRI at 7 T and dedicated image processing tools, we demonstrate a systematic relationship between T1‐based intracortical myelin content and functional connectivity. This effect is independent of the proximity of areas. We employ nonlinear dimensionality reduction to characterize connectivity components and identify specific aspects of functional connectivity that are linked to myelin content. Our results reveal a consistent spatial pattern throughout different analytic approaches. While functional connectivity and myelin content are closely linked in unimodal areas, the correspondence is lower in transmodal areas, especially in posteromedial cortex and the angular gyrus. Our findings are in agreement with comprehensive reports linking histologically assessed microstructure and connectivity in different mammalian species and extend them to the human cerebral cortex in vivo.

[1]  F. Dick,et al.  In Vivo Functional and Myeloarchitectonic Mapping of Human Primary Auditory Areas , 2012, The Journal of Neuroscience.

[2]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[3]  D. V. van Essen,et al.  Mapping Human Cortical Areas In Vivo Based on Myelin Content as Revealed by T1- and T2-Weighted MRI , 2011, The Journal of Neuroscience.

[4]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[5]  Arno Villringer,et al.  Open Science CBS Neuroimaging Repository: Sharing ultra-high-field MR images of the brain , 2016, NeuroImage.

[6]  Mark Jenkinson,et al.  MSM: A new flexible framework for Multimodal Surface Matching , 2014, NeuroImage.

[7]  Jesper Andersson,et al.  A multi-modal parcellation of human cerebral cortex , 2016, Nature.

[8]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[9]  Aaron Carass,et al.  Erratum to: The Java Image Science Toolkit (JIST) for Rapid Prototyping and Publishing of Neuroimaging Software , 2010, Neuroinformatics.

[10]  Peter B. Jones,et al.  Gene transcription profiles associated with inter-modular hubs and connection distance in human functional magnetic resonance imaging networks , 2016, Philosophical Transactions of the Royal Society B: Biological Sciences.

[11]  Satrajit S. Ghosh,et al.  Predicting Activation Across Individuals with Resting-State Functional Connectivity Based Multi-Atlas Label Fusion , 2015, MICCAI.

[12]  O. Sporns,et al.  Functional connectivity between anatomically unconnected areas is shaped by collective network-level effects in the macaque cortex. , 2012, Cerebral cortex.

[13]  Polina Golland,et al.  Identifying Shared Brain Networks in Individuals by Decoupling Functional and Anatomical Variability. , 2016, Cerebral cortex.

[14]  S. Rombouts,et al.  Consistent resting-state networks across healthy subjects , 2006, Proceedings of the National Academy of Sciences.

[15]  K Amunts,et al.  Quantitative analysis of sulci in the human cerebral cortex: Development, regional heterogeneity, gender difference, asymmetry, intersubject variability and cortical architecture , 1997, Human brain mapping.

[16]  M. Hedhammar,et al.  Pancreatic Islet Survival and Engraftment Is Promoted by Culture on Functionalized Spider Silk Matrices , 2015, PloS one.

[17]  Pierre-Louis Bazin,et al.  Anatomically motivated modeling of cortical laminae , 2014, NeuroImage.

[18]  A. Schleicher,et al.  High‐resolution MRI reflects myeloarchitecture and cytoarchitecture of human cerebral cortex , 2005, Human brain mapping.

[19]  Arno Klein,et al.  A reproducible evaluation of ANTs similarity metric performance in brain image registration , 2011, NeuroImage.

[20]  M. Fox,et al.  Individual Variability in Functional Connectivity Architecture of the Human Brain , 2013, Neuron.

[21]  R I Grossman,et al.  Experimental allergic encephalomyelitis and multiple sclerosis: lesion characterization with magnetization transfer imaging. , 1992, Radiology.

[22]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[23]  A. W. Toga,et al.  A myelo-architectonic method for the structural classification of cortical areas , 2004, NeuroImage.

[24]  Krzysztof J. Gorgolewski,et al.  A high resolution 7-Tesla resting-state fMRI test-retest dataset with cognitive and physiological measures , 2014, Scientific Data.

[25]  Claus C. Hilgetag,et al.  Principles of ipsilateral and contralateral cortico-cortical connectivity in the mouse , 2015, Brain Structure and Function.

[26]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[27]  Pierre-Louis Bazin,et al.  Integration of geometric elements, Euclidean relations, and motion curves for parametric shape and motion estimation , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Brian B. Avants,et al.  N4ITK: Improved N3 Bias Correction , 2010, IEEE Transactions on Medical Imaging.

[29]  Fenna M. Krienen,et al.  Transcriptional profiles of supragranular-enriched genes associate with corticocortical network architecture in the human brain , 2016, Proceedings of the National Academy of Sciences.

[30]  P. Matthews,et al.  Independent anatomical and functional measures of the V1/V2 boundary in human visual cortex. , 2005, Journal of vision.

[31]  Claus C Hilgetag,et al.  Bridging Cytoarchitectonics and Connectomics in Human Cerebral Cortex , 2015, The Journal of Neuroscience.

[32]  Jouni K. Seppänen,et al.  matplotlib: matplotlib v1.5.1 , 2016 .

[33]  Justin L. Vincent,et al.  Intrinsic functional architecture in the anaesthetized monkey brain , 2007, Nature.

[34]  Robert Turner,et al.  Myelin and iron concentration in the human brain: A quantitative study of MRI contrast , 2014, NeuroImage.

[35]  Brian D. Mills,et al.  Bridging the Gap between the Human and Macaque Connectome: A Quantitative Comparison of Global Interspecies Structure-Function Relationships and Network Topology , 2014, The Journal of Neuroscience.

[36]  C. Hilgetag,et al.  A predictive model of the cat cortical connectome based on cytoarchitecture and distance , 2014, Brain Structure and Function.

[37]  Christine L. Tardif,et al.  A subject-specific framework for in vivo myeloarchitectonic analysis using high resolution quantitative MRI , 2016, NeuroImage.

[38]  Leonie Lampe,et al.  Lamina-dependent calibrated BOLD response in human primary motor cortex , 2016, NeuroImage.

[39]  A. Hopf,et al.  Über die Verteilung myeloarchitektonischer Merkmale in der Scheitellappenrinde beim Menschen , 1957, 1957.

[40]  Bernhard Preim,et al.  A cytoarchitecture-driven myelin model reveals area-specific signatures in human primary and secondary areas using ultra-high resolution in-vivo brain MRI , 2015, NeuroImage.

[41]  Stéphane Lafon,et al.  Diffusion maps , 2006 .

[42]  Satrajit S. Ghosh,et al.  Nipype: A Flexible, Lightweight and Extensible Neuroimaging Data Processing Framework in Python , 2011, Front. Neuroinform..

[43]  Brian B. Avants,et al.  Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain , 2008, Medical Image Anal..

[44]  O Sporns,et al.  Predicting human resting-state functional connectivity from structural connectivity , 2009, Proceedings of the National Academy of Sciences.

[45]  Matthew J. McAuliffe,et al.  Medical Image Processing, Analysis and Visualization in clinical research , 2001, Proceedings 14th IEEE Symposium on Computer-Based Medical Systems. CBMS 2001.

[46]  B. Biswal,et al.  Functional connectivity in the motor cortex of resting human brain using echo‐planar mri , 1995, Magnetic resonance in medicine.

[47]  Thomas T. Liu,et al.  A component based noise correction method (CompCor) for BOLD and perfusion based fMRI , 2007, NeuroImage.

[48]  Nikolaus Weiskopf,et al.  Using high-resolution quantitative mapping of R1 as an index of cortical myelination , 2014, NeuroImage.

[49]  Essa Yacoub,et al.  The WU-Minn Human Connectome Project: An overview , 2013, NeuroImage.

[50]  Rudolf Nieuwenhuys,et al.  A map of the human neocortex showing the estimated overall myelin content of the individual architectonic areas based on the studies of Adolf Hopf , 2016, Brain Structure and Function.

[51]  Martijn P. van den Heuvel,et al.  Cytoarchitectonic similarity is a wiring principle of the human connectome , 2016, bioRxiv.

[52]  Malcolm P. Young,et al.  Objective analysis of the topological organization of the primate cortical visual system , 1992, Nature.

[53]  G. Smith,et al.  Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. , 1927 .

[54]  C. Blakemore,et al.  Analysis of connectivity in the cat cerebral cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[55]  R W Cox,et al.  AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. , 1996, Computers and biomedical research, an international journal.

[56]  N. Logothetis,et al.  High-Resolution fMRI Reveals Laminar Differences in Neurovascular Coupling between Positive and Negative BOLD Responses , 2012, Neuron.

[57]  R. Nieuwenhuys The myeloarchitectonic studies on the human cerebral cortex of the Vogt–Vogt school, and their significance for the interpretation of functional neuroimaging data , 2013, Brain Structure and Function.

[58]  J. Connor,et al.  Relationship of iron to oligodendrocytes and myelination. , 1996, Glia.

[59]  Nicholas A. Bock,et al.  Visualizing the entire cortical myelination pattern in marmosets with magnetic resonance imaging , 2009, Journal of Neuroscience Methods.

[60]  Christian Windischberger,et al.  Toward discovery science of human brain function , 2010, Proceedings of the National Academy of Sciences.

[61]  Claudine Joëlle Gauthier,et al.  Cortical lamina-dependent blood volume changes in human brain at 7T , 2015, NeuroImage.

[62]  F. Dick,et al.  Mapping the Human Cortical Surface by Combining Quantitative T1 with Retinotopy† , 2012, Cerebral cortex.

[63]  M. Fukunaga,et al.  Layer-specific variation of iron content in cerebral cortex as a source of MRI contrast , 2010, Proceedings of the National Academy of Sciences.

[64]  A. MacKay,et al.  In vivo visualization of myelin water in brain by magnetic resonance , 1994, Magnetic resonance in medicine.

[65]  E. Formisano,et al.  Reproducibility and Reliability of Quantitative and Weighted T1 and T2∗ Mapping for Myelin-Based Cortical Parcellation at 7 Tesla , 2016, Front. Neuroanat..

[66]  Konrad Wagstyl,et al.  Cortical thickness gradients in structural hierarchies , 2015, NeuroImage.

[67]  D. Pandya,et al.  Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey , 1989, The Journal of comparative neurology.

[68]  V. Braitenberg,et al.  A note on myeloarchitectonics , 1962, The Journal of comparative neurology.

[69]  Matthew F. Glasser,et al.  Trends and Properties of Human Cerebral Cortex: Correlations with Cortical Myelin Content Introduction and Review , 2022 .

[70]  Alexis Roche,et al.  A Four-Dimensional Registration Algorithm With Application to Joint Correction of Motion and Slice Timing in fMRI , 2011, IEEE Transactions on Medical Imaging.

[71]  Juliane Dinse,et al.  A computational framework for ultra-high resolution cortical segmentation at 7Tesla , 2014, NeuroImage.

[72]  Bruce Fischl,et al.  Mapping an intrinsic MR property of gray matter in auditory cortex of living humans: A possible marker for primary cortex and hemispheric differences , 2006, NeuroImage.

[73]  H. Barbas General cortical and special prefrontal connections: principles from structure to function. , 2015, Annual review of neuroscience.

[74]  D. Pandya,et al.  Prefrontal cortex in relation to other cortical areas in rhesus monkey: architecture and connections. , 1990, Progress in brain research.

[75]  P. Flechsig Anatomie des menschlichen Gehirns und Rückenmarks : auf myelogenetischer Grundlage , 1920 .

[76]  B. Biswal,et al.  The resting brain: unconstrained yet reliable. , 2009, Cerebral cortex.

[77]  Mark Jenkinson,et al.  The minimal preprocessing pipelines for the Human Connectome Project , 2013, NeuroImage.

[78]  Rolf Gruetter,et al.  Studying cyto and myeloarchitecture of the human cortex at ultra-high field with quantitative imaging: R1, R2 * and magnetic susceptibility , 2017, NeuroImage.

[79]  M. A. Macconaill Die Architektonik des menschlichen Stirnhirns , 1963 .

[80]  Uwe Aickelin,et al.  Tailored RF pulse for magnetization inversion at ultrahigh field , 2010, Magnetic resonance in medicine.

[81]  Skipper Seabold,et al.  Statsmodels: Econometric and Statistical Modeling with Python , 2010, SciPy.

[82]  R. Gruetter,et al.  Retrospective correction of involuntary microscopic head movement using highly accelerated fat image navigators (3D FatNavs) at 7T , 2016, Magnetic resonance in medicine.

[83]  Matti Hämäläinen,et al.  Brain Mapping: An Encyclopedic Reference , 2015 .

[84]  P. Morosan,et al.  Observer-Independent Method for Microstructural Parcellation of Cerebral Cortex: A Quantitative Approach to Cytoarchitectonics , 1999, NeuroImage.

[85]  Valérie Bonnardel,et al.  Structure of colour space derived from three different tasks , 2005 .

[86]  Oliver Speck,et al.  Highest Resolution In Vivo Human Brain MRI Using Prospective Motion Correction , 2015, PloS one.

[87]  Tobias Kober,et al.  MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field , 2010, NeuroImage.

[88]  Randy L. Buckner,et al.  The evolution of distributed association networks in the human brain , 2013, Trends in Cognitive Sciences.

[89]  Bruce Fischl,et al.  Accurate and robust brain image alignment using boundary-based registration , 2009, NeuroImage.

[90]  René S. Kahn,et al.  Associated Microscale Spine Density and Macroscale Connectivity Disruptions in Schizophrenia , 2016, Biological Psychiatry.

[91]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[92]  Ruben Schmidt,et al.  Linking Macroscale Graph Analytical Organization to Microscale Neuroarchitectonics in the Macaque Connectome , 2014, The Journal of Neuroscience.

[93]  Karl J. Friston,et al.  On Hyperpriors and Hypopriors: Comment on Pellicano and Burr , 2022 .

[94]  Gaël Varoquaux,et al.  The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.

[95]  Scott T. Grafton,et al.  Structural foundations of resting-state and task-based functional connectivity in the human brain , 2013, Proceedings of the National Academy of Sciences.

[96]  D. Pandya,et al.  Architectonic parcellation of the temporal operculum in rhesus monkey and its projection pattern , 1973, Zeitschrift für Anatomie und Entwicklungsgeschichte.

[97]  Katrin Amunts,et al.  Cortical Folding Patterns and Predicting Cytoarchitecture , 2007, Cerebral cortex.

[98]  Elizabeth Jefferies,et al.  Situating the default-mode network along a principal gradient of macroscale cortical organization , 2016, Proceedings of the National Academy of Sciences.

[99]  B. T. Thomas Yeo,et al.  The Organization of Local and Distant Functional Connectivity in the Human Brain , 2010, PLoS Comput. Biol..

[100]  Vince D. Calhoun,et al.  Measuring brain connectivity: Diffusion tensor imaging validates resting state temporal correlations , 2008, NeuroImage.

[101]  Justin L. Vincent,et al.  Precuneus shares intrinsic functional architecture in humans and monkeys , 2009, Proceedings of the National Academy of Sciences.

[102]  X. Zuo,et al.  Test-retest reliabilities of resting-state FMRI measurements in human brain functional connectomics: A systems neuroscience perspective , 2014, Neuroscience & Biobehavioral Reviews.

[103]  O. Sporns,et al.  Mapping the Structural Core of Human Cerebral Cortex , 2008, PLoS biology.

[104]  R. Turner,et al.  Microstructural Parcellation of the Human Cerebral Cortex – From Brodmann's Post-Mortem Map to in vivo Mapping with High-Field Magnetic Resonance Imaging , 2011, Front. Hum. Neurosci..

[105]  Koen V. Haak,et al.  Connectopic mapping with resting-state fMRI , 2016, NeuroImage.

[106]  John W. Harwell,et al.  Similar patterns of cortical expansion during human development and evolution , 2010, Proceedings of the National Academy of Sciences.

[107]  Claus C. Hilgetag,et al.  A Predictive Structural Model of the Primate Connectome , 2015, Scientific Reports.

[108]  S. Bok Der Einflu\ der in den Furchen und Windungen auftretenden Krümmungen der Gro\hirnrinde auf die Rindenarchitektur , 1929 .

[109]  Pierre-Louis Bazin,et al.  Multi-contrast multi-scale surface registration for improved alignment of cortical areas , 2015, NeuroImage.

[110]  B. Todorich,et al.  Oligodendrocytes and myelination: The role of iron , 2009, Glia.

[111]  Michael Eickenberg,et al.  Machine learning for neuroimaging with scikit-learn , 2014, Front. Neuroinform..

[112]  A. Lutti,et al.  Advances in MRI-based computational neuroanatomy: from morphometry to in-vivo histology. , 2015, Current opinion in neurology.

[113]  Wes McKinney,et al.  Data Structures for Statistical Computing in Python , 2010, SciPy.

[114]  H. White A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity , 1980 .

[115]  P. B. Cipolloni,et al.  Cerebral Cortex: Architecture, Connections, and the Dual Origin Concept , 2015 .

[116]  D. Pandya,et al.  Architecture and Connections of Cortical Association Areas , 1985 .

[117]  Marco Catani,et al.  Brain Mapping: An encyclopedic reference , 2015 .