Blind estimation of mixed noise parameters in images using robust regression curve fitting

Methods for blind estimation of signal dependent noise parameters from scatter-plots by polynomial regression are considered. Some new modifications as well as known ones are discussed and their performance is compared for test images with simulated signal dependent noise. Recommendations on method application and parameter setting are given.

[1]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[2]  Luciano Alparone,et al.  Reliably estimating the speckle noise from SAR data , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).

[3]  Richard Szeliski,et al.  Automatic Estimation and Removal of Noise from a Single Image , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  William Dumouchel,et al.  Integrating a robust option into a multiple regression computing environment , 1992 .

[5]  Kacem Chehdi,et al.  Unsupervised variational classification through image multi-thresholding , 2005, 2005 13th European Signal Processing Conference.

[6]  Karen O. Egiazarian,et al.  Practical Poissonian-Gaussian Noise Modeling and Fitting for Single-Image Raw-Data , 2008, IEEE Transactions on Image Processing.

[7]  S. Quegan,et al.  Understanding Synthetic Aperture Radar Images , 1998 .

[8]  I. Selesnick,et al.  Bivariate shrinkage with local variance estimation , 2002, IEEE Signal Processing Letters.

[9]  A. Barducci,et al.  Noise modelling and estimation of hyperspectral data from airborne imaging spectrometers , 2006 .

[10]  Nikolay N. Ponomarenko,et al.  Methods and automatic procedures for processing images based on blind evaluation of noise type and characteristics , 2011 .

[11]  B. Vozel,et al.  Improved Noise Parametr Estimation and Filtering of MM-Band SLAR Images , 2007, 2007 International Kharkov Symposium Physics and Engrg. of Millimeter and Sub-Millimeter Waves (MSMW).

[12]  Vladimir V. Lukin,et al.  Segmentation-based method for blind evaluation of noise variance in images , 2008 .

[13]  Jaakko Astola,et al.  Improved method for blind estimation of the variance of mixed noise using weighted LMS line fitting algorithm , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[14]  Rakhi C. Motwani,et al.  Survey of Image Denoising Techniques , 2004 .

[15]  Yair Weiss,et al.  Scale invariance and noise in natural images , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[16]  John P. Kerekes,et al.  Hyperspectral Imaging System Modeling , 2003 .