A Time Hierarchy Theorem for Nondeterministic Cellular Automata

We present a tight time-hierarchy theorem for nondeterministic cellular automata by using a recursive padding argument. It is shown that, if t2(n) is a time-constructible function and t2(n) grows faster than t1(n+1), then there exists a language which can be accepted by a t2(n)- time nondeterministic cellular automaton but not by any t1(n)-time nondeterministic cellular automaton.

[1]  Oscar H. Ibarra A Note Concerning Nondeterministic Tape Complexities , 1972, JACM.

[2]  Patrícia Duarte de Lima Machado,et al.  Unit Testing for CASL Architectural Specifications , 2002, MFCS.

[3]  Katsunobu Imai,et al.  Translational Lemmas for Alternating TMs and PRAMs , 2005, FCT.

[4]  Michael Sipser,et al.  Introduction to the Theory of Computation , 1996, SIGA.

[5]  F. C. Hennie,et al.  One-Tape, Off-Line Turing Machine Computations , 1965, Inf. Control..

[6]  Stephen A. Cook,et al.  Time Bounded Random Access Machines , 1973, J. Comput. Syst. Sci..

[7]  Jacques Mazoyer,et al.  A Six-State Minimal Time Solution to the Firing Squad Synchronization Problem , 1987, Theor. Comput. Sci..

[8]  Katsunobu Imai,et al.  Hierarchies of DLOGTIME-Uniform Circuits , 2004, MCU.

[9]  Martin Fürer,et al.  The tight deterministic time hierarchy , 1982, STOC '82.

[10]  Katsunobu Imai,et al.  Computational Complexity in the Hyperbolic Plane , 2002, MFCS.

[11]  Kazuo Iwama,et al.  Parallel complexity hierarchies based on PRAMs and DLOGTLME-uniform circuits , 1996, Proceedings of Computational Complexity (Formerly Structure in Complexity Theory).

[12]  Jr. Hartley Rogers Theory of Recursive Functions and Effective Computability , 1969 .

[13]  Krzysztof Lorys New Time Hierarchy Results for Deterministic TMs , 1992, STACS.

[14]  Wolfgang J. Paul,et al.  On alternation , 1980, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[15]  Stephen A. Cook A Hierarchy for Nondeterministic Time Complexity , 1973, J. Comput. Syst. Sci..

[16]  Maurice Margenstern,et al.  Time and Space Complexity Classes of Hyperbolic Cellular Automata , 2004, IEICE Trans. Inf. Syst..

[17]  Robin Milner An Action Structure for Synchronous pi-Calculus , 1993, FCT.

[18]  Michael J. Fischer,et al.  Separating Nondeterministic Time Complexity Classes , 1978, JACM.

[19]  Katsunobu Imai,et al.  Constructible functions in cellular automata and their applications to hierarchy results , 2002, Theor. Comput. Sci..

[20]  Kazuo Iwama,et al.  Improved Time and Space Hierarchies of One-Tape Off-Line TMs , 1998, MFCS.

[21]  Michael Sipser,et al.  Introduction to the Theory of Computation: Preliminary Edition , 1996 .

[22]  J. Seiferas NONDETERMINISTIC TIME AND SPACE COMPLEXITY CLASSES , 1974 .

[23]  J. Hartmanis,et al.  On the Computational Complexity of Algorithms , 1965 .

[24]  Jozef Gruska,et al.  Mathematical Foundations of Computer Science 1998 , 1998, Lecture Notes in Computer Science.

[25]  Wolfgang J. Paul On Time Hierarchies , 1979, J. Comput. Syst. Sci..