Content based image retrieval system using clustered scale invariant feature transforms

Abstract The large amounts of image collections available from a variety of sources have posed increasing technical challenges to computer systems to store/transmit and index/manage the image data to make such collections easily accessible. To search and retrieve the expected images from the database a content-based image retrieval (CBIR) system is highly demanded. CBIR extracts features of a query image and try to match them with extracted features from images in the database. This paper introduces two novel methods as image descriptors. The basis of the proposed methods is built upon scale invariant feature transform (SIFT) algorithm. After extracting image features using SIFT, k-means clustering is applied on feature matrix extracted by SIFT, and then two new kinds of dimensionality reductions are applied to make SIFT features more efficient and realistic for image retrieval problem. Using the proposed strategies we cannot only take the advantage of SIFT features but also we can highly decrease the memory storage used by SIFT features. As well as in order to compare images we do not need to run the time-consuming matching algorithm of SIFT. Finally, proposed methods are compared with two popular methods namely, color auto-correlogram and wavelet transform. As a result, our proposed retrieval system is fast and accurate and it can efficiently manage large databases. Experimental results on two popular databases, Caltech 101 (with 9144 images) and Li database (with 2360) images, show the superiority and efficiency of the proposed methods.

[1]  David G. Lowe,et al.  Shape indexing using approximate nearest-neighbour search in high-dimensional spaces , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[2]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[3]  Pietro Perona,et al.  Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[4]  Cordelia Schmid,et al.  Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[5]  Najla Megherbi Bouallagu,et al.  Object Recognition using 3D SIFT in Complex CT Volumes , 2010, BMVC.

[6]  Prabir Kumar Biswas,et al.  Texture image retrieval using new rotated complex wavelet filters , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[7]  David G. Lowe,et al.  What and Where: 3D Object Recognition with Accurate Pose , 2006, Toward Category-Level Object Recognition.

[8]  Pietro Perona,et al.  Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[9]  James J. Little,et al.  Vision-based mobile robot localization and mapping using scale-invariant features , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[10]  B. S. Manjunath,et al.  Color and texture descriptors , 2001, IEEE Trans. Circuits Syst. Video Technol..

[11]  Najla Megherbi Bouallagu,et al.  A comparison of 3D interest point descriptors with application to airport baggage object detection in complex CT imagery , 2013, Pattern Recognit..

[12]  Andrew Zisserman,et al.  Video Google: a text retrieval approach to object matching in videos , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[13]  Matthew A. Brown,et al.  Recognising panoramas , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[14]  D. Louis Collins,et al.  Feature-based morphometry: Discovering group-related anatomical patterns , 2010, NeuroImage.