Emulation of environmental models using polynomial chaos expansion

Abstract This paper investigates the applicability of model emulation to speed up simulation time of CPU intensive environmental models. Polynomial chaos expansion (PCE) emulators are constructed for three case studies of increasing complexity. The level of emulator training and the order of polynomial necessary to sufficiently build accurate emulators for each model are investigated. Although the PCE emulators shown here do not approximate well the outputs of parameter rich models (80 + parameters), results demonstrate that the emulators mimic closely outputs of relatively simple, low dimensional, simulation models (15 parameters or less). Furthermore, the PCE emulators are tested with applications such as Global Sensitivity Analysis (GSA). Results illustrate the advantages and drawbacks of using classical PCE emulators for treating computational limitation of complex environmental models.

[1]  W. James Shuttleworth,et al.  Towards a comprehensive approach to parameter estimation in land surface parameterization schemes , 2013 .

[2]  Houman Owhadi,et al.  A non-adapted sparse approximation of PDEs with stochastic inputs , 2010, J. Comput. Phys..

[3]  Peter E. Thornton,et al.  DIMENSIONALITY REDUCTION FOR COMPLEX MODELS VIA BAYESIAN COMPRESSIVE SENSING , 2014 .

[4]  Nate G. McDowell,et al.  Taking off the training wheels: the properties of a dynamic vegetation model without climate envelopes, CLM4.5(ED) , 2015 .

[5]  R. Lacaze,et al.  A Global Database of Land Surface Parameters at 1-km Resolution in Meteorological and Climate Models , 2003 .

[6]  D. Mallants,et al.  Efficient posterior exploration of a high‐dimensional groundwater model from two‐stage Markov chain Monte Carlo simulation and polynomial chaos expansion , 2013 .

[7]  J. A. Vrugt,et al.  Bayesian Inference of Tree Water Relations Using a Soil-Tree-Atmosphere Continuum Model☆ , 2013 .

[8]  K.,et al.  Carbon–Concentration and Carbon–Climate Feedbacks in CMIP5 Earth System Models , 2012 .

[9]  M. Lomas,et al.  Regional variation in the particulate organic carbon to nitrogen ratio in the surface ocean , 2013 .

[10]  D. Steinberg,et al.  Computer experiments: a review , 2010 .

[11]  Ronald,et al.  GFDL’s ESM2 Global Coupled Climate–Carbon Earth System Models. Part I: Physical Formulation and Baseline Simulation Characteristics , 2012 .

[12]  Fabio Nobile,et al.  An Anisotropic Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[13]  D. Lawrence,et al.  Parameterization improvements and functional and structural advances in Version 4 of the Community Land Model , 2011 .

[14]  Pol D. Spanos,et al.  Spectral Stochastic Finite-Element Formulation for Reliability Analysis , 1991 .

[15]  C. Fortuin,et al.  Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. I Theory , 1973 .

[16]  Soroosh Sorooshian,et al.  Model Parameter Estimation Experiment (MOPEX): An overview of science strategy and major results from the second and third workshops , 2006 .

[17]  Jinglai Li,et al.  Adaptive Construction of Surrogates for the Bayesian Solution of Inverse Problems , 2013, SIAM J. Sci. Comput..

[18]  Christine A. Shoemaker,et al.  A Stochastic Radial Basis Function Method for the Global Optimization of Expensive Functions , 2007, INFORMS J. Comput..

[19]  Jack P. C. Kleijnen,et al.  Design and Analysis of Computational Experiments: Overview , 2010, Experimental Methods for the Analysis of Optimization Algorithms.

[20]  P. Thornton,et al.  The Impact of Parametric Uncertainties on Biogeochemistry in the E3SM Land Model , 2017 .

[21]  J. Vrugt,et al.  A formal likelihood function for parameter and predictive inference of hydrologic models with correlated, heteroscedastic, and non‐Gaussian errors , 2010 .

[22]  Steven D. Glaser,et al.  Sampling Strategies in Forest Hydrology and Biogeochemistry , 2011 .

[23]  Bryan A. Tolson,et al.  Review of surrogate modeling in water resources , 2012 .

[24]  Van Genuchten,et al.  A closed-form equation for predicting the hydraulic conductivity of unsaturated soils , 1980 .

[25]  Raghavan Srinivasan,et al.  Approximating SWAT Model Using Artificial Neural Network and Support Vector Machine 1 , 2009 .

[26]  R. Feddes,et al.  Simulation of field water use and crop yield , 1978 .

[27]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[28]  Jack P. C. Kleijnen,et al.  A Comment on Blanning's “Metamodel for Sensitivity Analysis: The Regression Metamodel in Simulation” , 1975 .

[29]  Ming Ye,et al.  Evaluating two sparse grid surrogates and two adaptation criteria for groundwater Bayesian uncertainty quantification , 2016 .

[30]  Willem Bouten,et al.  Transpiration dynamics of an Austrian Pine stand and its forest floor: identifying controlling conditions using artificial neural networks , 2002 .

[31]  Youssef M. Marzouk,et al.  Adaptive Smolyak Pseudospectral Approximations , 2012, SIAM J. Sci. Comput..

[32]  Keith W. Oleson,et al.  Simulation of Global Land Surface Conditions from 1948 to 2004. Part I: Forcing Data and Evaluations , 2006 .

[33]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[34]  Z. Li,et al.  Parameter uncertainty and temporal dynamics of sensitivity for hydrologic models: A hybrid sequential data assimilation and probabilistic collocation method , 2016, Environ. Model. Softw..

[35]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[36]  O. L. Maître,et al.  Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics , 2010 .

[37]  Soroosh Sorooshian,et al.  Sensitivity analysis of a land surface scheme using multicriteria methods , 1999 .

[38]  Peter Reichert,et al.  Fast mechanism-based emulator of a slow urban hydrodynamic drainage simulator , 2016, Environ. Model. Softw..

[39]  L. Gu,et al.  Calibration of the E3SM Land Model Using Surrogate‐Based Global Optimization , 2018, Journal of Advances in Modeling Earth Systems.

[40]  Bruno Sudret,et al.  Global sensitivity analysis using polynomial chaos expansions , 2008, Reliab. Eng. Syst. Saf..

[41]  Roger Ghanem,et al.  Characterization of reservoir simulation models using a polynomial chaos‐based ensemble Kalman filter , 2009 .

[42]  Frank Lunkeit,et al.  Earth system models of intermediate complexity: closing the gap in the spectrum of climate system models , 2002 .

[43]  Robert W. Blanning Response to Michel, Kleijnen and Permut , 1975 .

[44]  M. Ek,et al.  Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth's terrestrial water , 2011 .

[45]  S. Planton,et al.  A Simple Parameterization of Land Surface Processes for Meteorological Models , 1989 .

[46]  Dylan Beaudette,et al.  Soil Moisture Response to Snowmelt and Rainfall in a Sierra Nevada Mixed‐Conifer Forest , 2011 .

[47]  A. O'Hagan,et al.  Bayesian emulation of complex multi-output and dynamic computer models , 2010 .

[48]  Michael S. Eldred,et al.  Sparse Pseudospectral Approximation Method , 2011, 1109.2936.

[49]  Patrick R. Conrad,et al.  Accelerating Asymptotically Exact MCMC for Computationally Intensive Models via Local Approximations , 2014, 1402.1694.

[50]  Miroslav Šejna,et al.  Development and Applications of the HYDRUS and STANMOD Software Packages and Related Codes , 2008 .

[51]  Luigi Berardi,et al.  Efficient multi-objective optimal design of water distribution networks on a budget of simulations using hybrid algorithms , 2009, Environ. Model. Softw..

[52]  Lingzao Zeng,et al.  Data assimilation for unsaturated flow models with restart adaptive probabilistic collocation based Kalman filter , 2016 .

[53]  Christine A. Shoemaker,et al.  Improved Strategies for Radial basis Function Methods for Global Optimization , 2007, J. Glob. Optim..

[54]  Q. Kang,et al.  Optimization and uncertainty assessment of strongly nonlinear groundwater models with high parameter dimensionality , 2010 .

[55]  George Z. Gertner,et al.  Understanding and comparisons of different sampling approaches for the Fourier Amplitudes Sensitivity Test (FAST) , 2011, Comput. Stat. Data Anal..

[56]  Runze Li,et al.  Design and Modeling for Computer Experiments , 2005 .

[57]  Stefan M. Wild,et al.  Bayesian Calibration and Uncertainty Analysis for Computationally Expensive Models Using Optimization and Radial Basis Function Approximation , 2008 .

[58]  Andrea Castelletti,et al.  Emulation techniques for the reduction and sensitivity analysis of complex environmental models , 2012, Environ. Model. Softw..

[59]  Emanuele Borgonovo,et al.  Model emulation and moment-independent sensitivity analysis: An application to environmental modelling , 2012, Environ. Model. Softw..

[60]  Thomas J. Santner,et al.  The Design and Analysis of Computer Experiments , 2003, Springer Series in Statistics.

[61]  D. Xiu Efficient collocational approach for parametric uncertainty analysis , 2007 .

[62]  Markus Reichstein,et al.  Improving canopy processes in the Community Land Model version 4 (CLM4) using global flux fields empirically inferred from FLUXNET data , 2011 .

[63]  John P. van Gigch,et al.  Diagnosis and metamodeling of systems failures , 1988 .

[64]  George Z. Gertner,et al.  Extending a global sensitivity analysis technique to models with correlated parameters , 2007, Comput. Stat. Data Anal..

[65]  W. Collins,et al.  The Community Earth System Model: A Framework for Collaborative Research , 2013 .

[66]  Sonja Kuhnt,et al.  Design and analysis of computer experiments , 2010 .

[67]  S. Pacala,et al.  A METHOD FOR SCALING VEGETATION DYNAMICS: THE ECOSYSTEM DEMOGRAPHY MODEL (ED) , 2001 .

[68]  Olivier P. Le Maître,et al.  Polynomial chaos expansion for sensitivity analysis , 2009, Reliab. Eng. Syst. Saf..