Geodesics on Shape Spaces with Bounded Variation and Sobolev Metrics

This paper studies the space of $BV^2$ planar curves endowed with the $BV^2$ Finsler metric over its tangent space of displacement vector fields. Such a space is of interest for applications in image processing and computer vision because it enables piecewise regular curves that undergo piecewise regular deformations, such as articulations. The main contribution of this paper is the proof of the existence of the shortest path between any two $BV^2$-curves for this Finsler metric. Such a result is proved by applying the direct method of calculus of variations to minimize the geodesic energy. This method applies more generally to similar cases such as the space of curves with $H^k$ metrics for $k\geq 2$ integer. This space has a strong Riemannian structure and is geodesically complete. Thus, our result shows that the exponential map is surjective, which is complementary to geodesic completeness in infinite dimensions. We propose a finite element discretization of the minimal geodesic problem, and use a grad...

[1]  D. Mumford,et al.  An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach , 2006, math/0605009.

[2]  Karl Kunisch,et al.  Total Generalized Variation , 2010, SIAM J. Imaging Sci..

[3]  R. Durrett Probability: Theory and Examples , 1993 .

[4]  Stefano Soatto,et al.  A New Geometric Metric in the Space of Curves, and Applications to Tracking Deforming Objects by Prediction and Filtering , 2011, SIAM J. Imaging Sci..

[5]  Guillermo Sapiro,et al.  New Possibilities with Sobolev Active Contours , 2007, International Journal of Computer Vision.

[6]  P. Michor A ZOO OF DIFFEOMORPHISM GROUPS ON R , 2012 .

[7]  L. Evans Measure theory and fine properties of functions , 1992 .

[8]  Joan Alexis Glaunès,et al.  Surface Matching via Currents , 2005, IPMI.

[9]  David Mumford,et al.  A zoo of diffeomorphism groups on $$\mathbb{R }^{n}$$Rn , 2012, 1211.5704.

[10]  Maïtine Bergounioux,et al.  Mathematical Analysis of a Inf-Convolution Model for Image Processing , 2016, J. Optim. Theory Appl..

[11]  Juan Ferrera,et al.  Proximal Calculus on Riemannian Manifolds , 2005 .

[12]  Srishti D. Chatterji Martingales of Banach-valued random variables , 1960 .

[13]  Anthony J. Yezzi,et al.  Sobolev Active Contours , 2005, International Journal of Computer Vision.

[14]  Martin Burger,et al.  Level Set and PDE Based Reconstruction Methods in Imaging: Cetraro, Italy 2008, Editors: Martin Burger, Stanley Osher , 2013 .

[15]  D. Mumford,et al.  GEODESIC COMPLETENESS FOR SOBOLEV METRICS ON THE SPACE OF IMMERSED PLANE CURVES , 2013, Forum of Mathematics, Sigma.

[16]  Martin Bauer,et al.  Sobolev Metrics on Shape Space, II: Weighted Sobolev Metrics and Almost Local Metrics , 2011 .

[17]  L. Ambrosio,et al.  Functions of Bounded Variation and Free Discontinuity Problems , 2000 .

[18]  Xavier Pennec,et al.  Probabilities and statistics on Riemannian manifolds: Basic tools for geometric measurements , 1999, NSIP.

[19]  L. Younes Shapes and Diffeomorphisms , 2010 .

[20]  G. Peyr'e,et al.  Piecewise rigid curve deformation via a Finsler steepest descent , 2013, 1308.0224.

[21]  B. Mordukhovich Variational analysis and generalized differentiation , 2006 .

[22]  C. Ionescu Tulcea,et al.  Topics in the Theory of Lifting , 1969 .

[23]  Anthony J. Yezzi,et al.  Tracking With Sobolev Active Contours , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[24]  David Mumford,et al.  A zoo of diffeomorphism groups on R n , 2013 .

[25]  Nicholas Ayache,et al.  Geometric Means in a Novel Vector Space Structure on Symmetric Positive-Definite Matrices , 2007, SIAM J. Matrix Anal. Appl..

[26]  D. Mumford,et al.  Riemannian Geometries on Spaces of Plane Curves , 2003, math/0312384.

[27]  B. Mordukhovich Variational Analysis and Generalized Differentiation II: Applications , 2006 .

[28]  Thomas Kappeler,et al.  On the Regularity of the Composition of Diffeomorphisms , 2011, 1107.0488.

[29]  N. Grossman,et al.  Hilbert manifolds without epiconjugate points , 1965 .

[30]  Franccois-Xavier Vialard,et al.  Shape Splines and Stochastic Shape Evolutions: A Second Order Point of View , 2010, 1003.3895.

[31]  William P. Ziemer,et al.  Integral Inequalities of Poincare and Wirtinger Type for BV Functions , 1977 .

[32]  François-Xavier Vialard,et al.  Geodesic Regression for Image Time-Series , 2011, MICCAI.

[33]  Daniel Rueckert,et al.  Simultaneous Multi-scale Registration Using Large Deformation Diffeomorphic Metric Mapping , 2011, IEEE Transactions on Medical Imaging.

[34]  Martin Bauer,et al.  Overview of the Geometries of Shape Spaces and Diffeomorphism Groups , 2013, Journal of Mathematical Imaging and Vision.

[35]  M. Kilian,et al.  Geometric modeling in shape space , 2007, SIGGRAPH 2007.

[36]  F. Clarke,et al.  Topological Geometry: THE INVERSE FUNCTION THEOREM , 1981 .

[37]  Laurent Younes,et al.  Computable Elastic Distances Between Shapes , 1998, SIAM J. Appl. Math..

[38]  Ivar Ekeland The Hopf-Rinow theorem in infinite dimension , 1978 .

[39]  Martin Bauer,et al.  Sobolev metrics on the manifold of all Riemannian metrics , 2011, 1102.3347.

[40]  A. E. Taylor,et al.  Linear Functionals on Certain Spaces of Abstractly-Valued Functions , 1938 .

[41]  Anthony J. Yezzi,et al.  Conformal metrics and true "gradient flows" for curves , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[42]  Olivier D. Faugeras,et al.  Designing spatially coherent minimizing flows for variational problems based on active contours , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[43]  C. J. Atkin,et al.  The Hopf-Rinow Theorem is false in infinite Dimensions , 1975 .

[44]  Jesse Freeman,et al.  in Morse theory, , 1999 .

[45]  G. Sundaramoorthi,et al.  Properties of Sobolev-type metrics in the space of curves , 2006, math/0605017.

[46]  T. D. Pauw On SBV dual , 1998 .

[47]  S. Masnou,et al.  A coarea-type formula for the relaxation of a generalized elastica functional , 2011, 1112.2090.

[48]  A. Yezzi,et al.  Metrics in the space of curves , 2004, math/0412454.

[49]  Nicholas Ayache,et al.  A Log-Euclidean Framework for Statistics on Diffeomorphisms , 2006, MICCAI.

[50]  B. Cengiz,et al.  THE DUAL OF THE BOCHNER SPACE L(μ,E) FOR ARBİTRARY μ , 2002 .

[51]  Guillermo Sapiro,et al.  Geodesics in Shape Space via Variational Time Discretization , 2009, EMMCVPR.

[52]  L. Younes,et al.  Statistics on diffeomorphisms via tangent space representations , 2004, NeuroImage.