Geodesics on Shape Spaces with Bounded Variation and Sobolev Metrics
暂无分享,去创建一个
François-Xavier Vialard | Gabriel Peyré | Giacomo Nardi | G. Peyré | François-Xavier Vialard | G. Nardi
[1] D. Mumford,et al. An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach , 2006, math/0605009.
[2] Karl Kunisch,et al. Total Generalized Variation , 2010, SIAM J. Imaging Sci..
[3] R. Durrett. Probability: Theory and Examples , 1993 .
[4] Stefano Soatto,et al. A New Geometric Metric in the Space of Curves, and Applications to Tracking Deforming Objects by Prediction and Filtering , 2011, SIAM J. Imaging Sci..
[5] Guillermo Sapiro,et al. New Possibilities with Sobolev Active Contours , 2007, International Journal of Computer Vision.
[6] P. Michor. A ZOO OF DIFFEOMORPHISM GROUPS ON R , 2012 .
[7] L. Evans. Measure theory and fine properties of functions , 1992 .
[8] Joan Alexis Glaunès,et al. Surface Matching via Currents , 2005, IPMI.
[9] David Mumford,et al. A zoo of diffeomorphism groups on $$\mathbb{R }^{n}$$Rn , 2012, 1211.5704.
[10] Maïtine Bergounioux,et al. Mathematical Analysis of a Inf-Convolution Model for Image Processing , 2016, J. Optim. Theory Appl..
[11] Juan Ferrera,et al. Proximal Calculus on Riemannian Manifolds , 2005 .
[12] Srishti D. Chatterji. Martingales of Banach-valued random variables , 1960 .
[13] Anthony J. Yezzi,et al. Sobolev Active Contours , 2005, International Journal of Computer Vision.
[14] Martin Burger,et al. Level Set and PDE Based Reconstruction Methods in Imaging: Cetraro, Italy 2008, Editors: Martin Burger, Stanley Osher , 2013 .
[15] D. Mumford,et al. GEODESIC COMPLETENESS FOR SOBOLEV METRICS ON THE SPACE OF IMMERSED PLANE CURVES , 2013, Forum of Mathematics, Sigma.
[16] Martin Bauer,et al. Sobolev Metrics on Shape Space, II: Weighted Sobolev Metrics and Almost Local Metrics , 2011 .
[17] L. Ambrosio,et al. Functions of Bounded Variation and Free Discontinuity Problems , 2000 .
[18] Xavier Pennec,et al. Probabilities and statistics on Riemannian manifolds: Basic tools for geometric measurements , 1999, NSIP.
[19] L. Younes. Shapes and Diffeomorphisms , 2010 .
[20] G. Peyr'e,et al. Piecewise rigid curve deformation via a Finsler steepest descent , 2013, 1308.0224.
[21] B. Mordukhovich. Variational analysis and generalized differentiation , 2006 .
[22] C. Ionescu Tulcea,et al. Topics in the Theory of Lifting , 1969 .
[23] Anthony J. Yezzi,et al. Tracking With Sobolev Active Contours , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).
[24] David Mumford,et al. A zoo of diffeomorphism groups on R n , 2013 .
[25] Nicholas Ayache,et al. Geometric Means in a Novel Vector Space Structure on Symmetric Positive-Definite Matrices , 2007, SIAM J. Matrix Anal. Appl..
[26] D. Mumford,et al. Riemannian Geometries on Spaces of Plane Curves , 2003, math/0312384.
[27] B. Mordukhovich. Variational Analysis and Generalized Differentiation II: Applications , 2006 .
[28] Thomas Kappeler,et al. On the Regularity of the Composition of Diffeomorphisms , 2011, 1107.0488.
[29] N. Grossman,et al. Hilbert manifolds without epiconjugate points , 1965 .
[30] Franccois-Xavier Vialard,et al. Shape Splines and Stochastic Shape Evolutions: A Second Order Point of View , 2010, 1003.3895.
[31] William P. Ziemer,et al. Integral Inequalities of Poincare and Wirtinger Type for BV Functions , 1977 .
[32] François-Xavier Vialard,et al. Geodesic Regression for Image Time-Series , 2011, MICCAI.
[33] Daniel Rueckert,et al. Simultaneous Multi-scale Registration Using Large Deformation Diffeomorphic Metric Mapping , 2011, IEEE Transactions on Medical Imaging.
[34] Martin Bauer,et al. Overview of the Geometries of Shape Spaces and Diffeomorphism Groups , 2013, Journal of Mathematical Imaging and Vision.
[35] M. Kilian,et al. Geometric modeling in shape space , 2007, SIGGRAPH 2007.
[36] F. Clarke,et al. Topological Geometry: THE INVERSE FUNCTION THEOREM , 1981 .
[37] Laurent Younes,et al. Computable Elastic Distances Between Shapes , 1998, SIAM J. Appl. Math..
[38] Ivar Ekeland. The Hopf-Rinow theorem in infinite dimension , 1978 .
[39] Martin Bauer,et al. Sobolev metrics on the manifold of all Riemannian metrics , 2011, 1102.3347.
[40] A. E. Taylor,et al. Linear Functionals on Certain Spaces of Abstractly-Valued Functions , 1938 .
[41] Anthony J. Yezzi,et al. Conformal metrics and true "gradient flows" for curves , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.
[42] Olivier D. Faugeras,et al. Designing spatially coherent minimizing flows for variational problems based on active contours , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.
[43] C. J. Atkin,et al. The Hopf-Rinow Theorem is false in infinite Dimensions , 1975 .
[44] Jesse Freeman,et al. in Morse theory, , 1999 .
[45] G. Sundaramoorthi,et al. Properties of Sobolev-type metrics in the space of curves , 2006, math/0605017.
[46] T. D. Pauw. On SBV dual , 1998 .
[47] S. Masnou,et al. A coarea-type formula for the relaxation of a generalized elastica functional , 2011, 1112.2090.
[48] A. Yezzi,et al. Metrics in the space of curves , 2004, math/0412454.
[49] Nicholas Ayache,et al. A Log-Euclidean Framework for Statistics on Diffeomorphisms , 2006, MICCAI.
[50] B. Cengiz,et al. THE DUAL OF THE BOCHNER SPACE L(μ,E) FOR ARBİTRARY μ , 2002 .
[51] Guillermo Sapiro,et al. Geodesics in Shape Space via Variational Time Discretization , 2009, EMMCVPR.
[52] L. Younes,et al. Statistics on diffeomorphisms via tangent space representations , 2004, NeuroImage.