Calculation of dissociation constants and the relative stabilities of polynuclear clusters of 1:1 electrolytes in hydrothermal solutions at supercritical pressures and temperatures

[1]  E. Oelkers,et al.  Multiple Ion Association in Supercritical Aqueous Solutions of Single Electrolytes , 1993, Science.

[2]  E. Oelkers,et al.  SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000 ° C , 1992 .

[3]  W. E. Price,et al.  Ion pairing and redissociation in concentrated aqueous solutions of 2:2 electrolytes. A transport coefficient study of aqueous ZnSO4 , 1991 .

[4]  R. Popp,et al.  Experimental investigation of talc solubility in H2O-MgCl2-NaCl-HCl fluids in the range 500–700°C, 2 kb , 1991 .

[5]  James W. Johnson,et al.  Critical phenomena in hydrothermal systems; state, thermodynamic, electrostatic, and transport properties of H 2 O in the critical region , 1991 .

[6]  E. Oelkers,et al.  Calculation of activity coefficients and degrees of formation of neutral ion pairs in supercritical electrolyte solutions , 1991 .

[7]  J. Valleau,et al.  A Monte Carlo study of the coexistence region of the restricted primitive model , 1990 .

[8]  Everett L. Shock,et al.  Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Standard partial molal properties of organic species , 1990 .

[9]  E. Oelkers,et al.  Triple-ion anions and polynuclear complexing in supercritical electrolyte solutions , 1990 .

[10]  Everett L. Shock,et al.  Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Correlation algorithms for ionic species and equation of state predictions to 5 kb and 1000°C , 1988 .

[11]  E. Oelkers,et al.  Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: dissociation constants for supercritical alkali metal halides at temperatures from 400 to 800.degree.C and pressures from 500 to 4000 bar , 1988 .

[12]  L. Baumgartner,et al.  Mineral solubilities and speciation in supercritical metamorphic fluids , 1987 .

[13]  K. Pitzer,et al.  The restricted primitive model for ionic fluids , 1987 .

[14]  E. Plichta,et al.  Conductance of 1:1 electrolytes in methyl formate , 1987 .

[15]  H. Helgeson Errata II; Thermodynamics of minerals, reactions, and aqueous solutions at high pressures and temperatures , 1985 .

[16]  W. L. Marshall,et al.  Electrical conductances and ionization constants of salts, acids, and bases in supercritical aqueous fluids; I, Hydrochloric acid from 100 degrees to 700 degrees C and at pressures to 4000 bars , 1984 .

[17]  A. Tani,et al.  A cluster theory for electrolytes , 1983 .

[18]  M. Gillan Liquid-vapour equilibrium in the restricted primitive model for ionic liquids , 1983 .

[19]  H. Helgeson Thermodynamics of minerals, reactions, and aqueous solutions at high pressures and temperatures; errata , 1982 .

[20]  H. Helgeson,et al.  Theoretical prediction of the thermodynamic behavior of aqueous electrolytes by high pressures and temperatures; IV, Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600 degrees C and 5kb , 1981 .

[21]  Harold L. Friedman,et al.  Electrolyte Solutions at Equilibrium , 1981 .

[22]  D. N. Card,et al.  Primitive model electrolytes. II. The symmetrical electrolyte , 1980 .

[23]  J. Frantz,et al.  Mineral-solution equilibria—I. An experimental study of complexing and thermodynamic properties of aqueous MgCl2 in the system MgO-SiO2-H2O-HCl , 1979 .

[24]  H. Friedman,et al.  Ion pairing and related topics , 1979 .

[25]  J. Valleau,et al.  A Monte Carlo method for obtaining the interionic potential of mean force in ionic solution , 1975 .

[26]  Harold L. Friedman,et al.  Lewis-Randall to McMillan-Mayer conversion for the thermodynamic excess functions of solutions. Part I. Partial free energy coefficients , 1972 .

[27]  Sanford Gordon,et al.  CALCULATION OF COMPLEX CHEMICAL EQUILIBRIA , 1968 .

[28]  W. L. Marshall,et al.  Electrical conductances of aqueous sodium chloride solutions from 0 to 800.degree. and at pressures to 4000 bars , 1968 .

[29]  James N Butler,et al.  Ionic Equilibrium: A Mathematical Approach , 1964 .

[30]  Selmer M. Johnson,et al.  Chemical Equilibrium in Complex Mixtures , 1958 .

[31]  C. A. Kraus Electrolytes: from Dilute Solutions to Fused Salts , 1954 .

[32]  H. S. Young,et al.  Properties of Electrolytic Solutions. LIV. The Conductance and Molecular Weight of Some Salts in Benzene at Higher Concentrations1 , 1951 .

[33]  C. A. Kraus,et al.  Properties of Electrolytic Solutions. LIII. Molecular Weight of Salts in Benzene by the Cryoscopic Method1 , 1951 .

[34]  R. Fuoss,et al.  Properties of Electrolytic Solutions. IV. The Conductance Minimum and the Formation of Triple Ions Due to the Action of Coulomb Forces1 , 1933 .

[35]  R. Fuoss,et al.  Properties of Electrolytic Solutions. III. The Dissociation Constant , 1933 .

[36]  L. Baumgartner Experimental support for a sodium chloride species with Cl:Na > 1 from solubility data on the assemblage albite + andalusite + quartz , 1992 .

[37]  M. Hojo,et al.  Triple-ion formation and acid–base strength of ions in protophobic aprotic solvents , 1992 .

[38]  H. Ohtaki,et al.  A structural study of saturated aqueous solutions of some alkali halides by X-ray diffraction , 1992 .

[39]  E. Oelkers,et al.  Calculation of the thermodynamic properties of aqueous species at high pressures and temperatures. Effective electrostatic radii, dissociation constants and standard partial molal properties to 1000 °C and 5 kbar , 1992 .

[40]  H. Corti,et al.  The cluster theory for electrolyte solutions. Its extension and its limitations , 1990 .

[41]  H. Eugster,et al.  Thermodynamic modeling of geological materials : minerals, fluids and melts , 1987 .

[42]  D. Sverjensky Calculation of the thermodynamic properties of aqueous species and the solubilities of minerals in supercritical electrolyte solutions , 1987 .

[43]  Horacio R. Corti,et al.  Cluster theory applied to aqueous (2:2) electrolytes over a wide concentration range. Osmotic coefficients, association and redissociation , 1986 .

[44]  N. Boctor,et al.  Mineral-solution equilibria—V. Solubilities of rock-forming minerals in supercritical fluids , 1981 .

[45]  B. L. Tembe,et al.  Ionic association in model 2–2 electrolyte solutions , 1980 .

[46]  E. C. Beutner Slaty cleavage and related strain in Martinsburg Slate, Delaware Water Gap, New Jersey , 1978 .

[47]  Kenneth S. Pitzer,et al.  Thermodynamics of electrolytes. I. Theoretical basis and general equations , 1973 .

[48]  C. A. Kraus,et al.  Properties of electrolytic solutions. XVIII. Molecular polarisations and polar moments of some electrolytes in benzene solutions , 1936 .

[49]  R. Fuoss,et al.  Properties of Electrolytic Solutions. XV. Thermodynamic Properties of Very Weak Electrolytes , 1935 .