Quantum coding theorems

ContentsI. IntroductionII. General considerations § 1. Quantum communication channel § 2. Entropy bound and channel capacity § 3. Formulation of the quantum coding theorem. Weak conversionIII. Proof of the direct statement of the coding theorem § 1. Channels with pure signal states § 2. Reliability function § 3. Quantum binary channel § 4. Case of arbitrary states with bounded entropyIV. c-q channels with input constraints § 1. Coding theorem § 2. Gauss channel with one degree of freedom § 3. Classical signal on quantum background noise Bibliography

[1]  R. Gallager Information Theory and Reliable Communication , 1968 .

[2]  J. Bowen,et al.  On the capacity of a noiseless photon channel , 1967, IEEE Trans. Inf. Theory.

[3]  Michael D. Westmoreland,et al.  Sending classical information via noisy quantum channels , 1997 .

[4]  Masashi Ban,et al.  LETTER TO THE EDITOR: Cut-off rate for quantum communication channels with entangled measurement , 1998 .

[5]  E. Lieb,et al.  Proof of the strong subadditivity of quantum‐mechanical entropy , 1973 .

[6]  Lev B. Levitin,et al.  The Maximum Amount of Information Transmissible by an Electromagnetic Field , 1963 .

[7]  D. Petz,et al.  Quantum Entropy and Its Use , 1993 .

[8]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[9]  Benjamin Schumacher,et al.  A new proof of the quantum noiseless coding theorem , 1994 .

[10]  A. S. Kholevo Investigations in the general theory of statistical decisions , 1978 .

[11]  A. Holevo,et al.  On Reliability Function of Quantum Communication Channel , 1997 .

[12]  G. Lindblad Entropy, information and quantum measurements , 1973 .

[13]  Charles H. Bennett Classical and Quantum Information Transmission and Interactions , 1997 .

[14]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[15]  P. Shor,et al.  QUANTUM-CHANNEL CAPACITY OF VERY NOISY CHANNELS , 1997, quant-ph/9706061.

[16]  C. Caves,et al.  Quantum limits on bosonic communication rates , 1994 .

[17]  A. Holevo Problems in the mathematical theory of quantum communication channels , 1977 .

[18]  A. Uhlmann Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in an interpolation theory , 1977 .

[19]  Schumacher,et al.  Classical information capacity of a quantum channel. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[20]  M. Izutsu,et al.  Quantum channels showing superadditivity in classical capacity , 1998, quant-ph/9801012.

[21]  W. Wootters,et al.  Optimal detection of quantum information. , 1991, Physical review letters.

[22]  John A. Smolin,et al.  Entanglement-Enhanced Classical Communication on a Noisy Quantum Channel , 1996, quant-ph/9611006.

[23]  A. S. Holevo On Quantum Communication Channels with Constrained Inputs , 1997 .

[24]  L. Ballentine,et al.  Probabilistic and Statistical Aspects of Quantum Theory , 1982 .

[25]  Yuen,et al.  Ultimate information carrying limit of quantum systems. , 1993, Physical review letters.

[26]  K. Kraus,et al.  States, effects, and operations : fundamental notions of quantum theory : lectures in mathematical physics at the University of Texas at Austin , 1983 .

[27]  A. Wehrl General properties of entropy , 1978 .

[28]  C. Helstrom Quantum detection and estimation theory , 1969 .