Membrane system design and process feasibility analysis for CO2 capture from flue gas with a fixed-site-carrier membrane

Abstract Seeking an energy efficient and environmentally friendly technology for CO 2 capture could be promising for reduction of CO 2 emissions. Membranes have already been commercially used for selected gas separations and have potential to be used for CO 2 capture. However, process and economic feasibility of membrane separation system significantly depends on not only membrane materials but also process operating conditions. Thus, membrane system design by process simulation was conducted in this work. A single stage membrane unit was designed to accomplish specific separation requirements of >80% CO 2 capture ratio at a maximum acceptable membrane area 600,000 m 2 . The obtained characteristic diagrams showed that a minimum membrane performance of CO 2 permeance 2 m 3  (STP)/(m 2  h bar) and CO 2 /N 2 selectivity 135 should be achieved at a stage-cut of 15.2% and a feed and permeate pressure of 2.5 bar and 250 mbar, respectively. A two-stage membrane system using high performance fixed-site-carrier membranes by integration of compression heat was designed to achieve >80% CO 2 capture ratio and >95% CO 2 purity from a 18,260 kmol/h flue gas in a refinery. The simulation results showed nice potential for CO 2 capture with a specific energy consumption of 1.02 GJ/ton CO 2 and a capture cost of 47.87 $/ton CO 2 captured.

[1]  Tai‐Shung Chung,et al.  Room temperature ionic liquid/ZIF-8 mixed-matrix membranes for natural gas sweetening and post-combustion CO2 capture , 2013 .

[2]  Y. Lee,et al.  Thermally rearranged (TR) polybenzoxazole hollow fiber membranes for CO2 capture , 2012 .

[3]  Olav Bolland,et al.  High-temperature membranes in power generation with CO2 capture , 2004 .

[4]  J. Ahmad,et al.  Preparation and characterization of polyvinyl acetate/zeolite 4A mixed matrix membrane for gas separation , 2013 .

[5]  May-Britt Hägg,et al.  Novel fixed-site–carrier polyvinylamine membrane for carbon dioxide capture , 2004 .

[6]  A. J. Hill,et al.  Ultrapermeable, Reverse-Selective Nanocomposite Membranes , 2002, Science.

[7]  Neil B. McKeown,et al.  Gas separation membranes from polymers of intrinsic microporosity , 2005 .

[8]  W. S. Winston Ho,et al.  Carbon Dioxide Capture Using a CO2-Selective Facilitated Transport Membrane , 2008 .

[9]  May-Britt Hägg,et al.  CO2 Capture from Natural Gas Fired Power Plants by Using Membrane Technology , 2005 .

[10]  Enrico Drioli,et al.  Membrane technologies for CO2 separation , 2010 .

[11]  W. S. Winston Ho,et al.  Membrane processes for carbon capture from coal-fired power plant flue gas: A modeling and cost study , 2012 .

[12]  Richard Turton,et al.  Analysis, Synthesis and Design of Chemical Processes , 2002 .

[13]  May-Britt Hägg,et al.  Hollow fiber carbon membranes: Investigations for CO 2 capture , 2011 .

[14]  May-Britt Hägg,et al.  CO2 CAPTURE BY HOLLOW FIBRE CARBON MEMBRANES: EXPERIMENTS AND PROCESS SIMULATIONS , 2009 .

[15]  May-Britt Hägg,et al.  Separation performance of PVAm composite membrane for CO2 capture at various pH levels , 2013 .

[16]  May-Britt Hägg,et al.  REMOVED: Report on Pilot Scale Testing and Further Development of a Facilitated Transport Membrane for CO2 Capture from Power Plants , 2012 .

[17]  Jixiao Wang,et al.  PVAm–PIP/PS Composite Membrane with High Performance for CO2/N2 Separation , 2013 .

[18]  Ryan P. Lively,et al.  A high-flux polyimide hollow fiber membrane to minimize footprint and energy penalty for CO2 recovery from flue gas , 2012 .

[19]  Xuezhong He,et al.  Hollow fiber carbon membranes: From material to application , 2013 .

[20]  Edward S Rubin,et al.  A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control. , 2002, Environmental science & technology.

[21]  D. Sholl,et al.  Ultem®/ZIF-8 mixed matrix hollow fiber membranes for CO2/N2 separations , 2012 .

[22]  L. Shao,et al.  Crosslinking and stabilization of nanoparticle filled PMP nanocomposite membranes for gas separations , 2009 .

[23]  L. Robeson,et al.  The upper bound revisited , 2008 .

[24]  Haiqing Lin,et al.  Power plant post-combustion carbon dioxide capture: An opportunity for membranes , 2010 .

[25]  Anita J. Hill,et al.  Thermally rearranged (TR) polymer membranes for CO2 separation , 2010 .

[26]  Ashwani Kumar,et al.  Simulation of membrane-based CO2 capture in a coal-fired power plant ☆ , 2013 .

[27]  Xiangping Zhang,et al.  Post-combustion Carbon Capture with a Gas Separation Membrane: Parametric Study, Capture Cost, and Exergy Analysis , 2013 .

[28]  Eugeny Y. Kenig,et al.  CO2‐Alkanolamine Reaction Kinetics: A Review of Recent Studies , 2007 .

[29]  May-Britt Hägg,et al.  A feasibility study of CO2 capture from flue gas by a facilitated transport membrane , 2010 .

[30]  Kunlei Liu,et al.  NF/RO faujasite zeolite membrane-ammonia absorption solvent hybrid system for potential post-combust , 2011 .

[31]  May-Britt Hägg,et al.  Membranes for Environmentally Friendly Energy Processes , 2012, Membranes.

[32]  May-Britt Hägg,et al.  Facilitated transport of CO2 in novel PVAm/PVA blend membrane , 2009 .

[33]  May-Britt Hägg,et al.  Preparation and Characterization of Hollow Fiber Carbon Membranes from Cellulose Acetate Precursors , 2011 .

[34]  Matthias Wessling,et al.  Pushing the limits of block copolymer membranes for CO 2 separation , 2011 .

[35]  May-Britt Hägg,et al.  Composite hollow fiber membranes for CO2 capture , 2010 .

[36]  G. Versteeg,et al.  CO2 capture from power plants. Part I: A parametric study of the technical performance based on monoethanolamine , 2007 .

[37]  R. Krishna,et al.  Investigating the potential of MgMOF-74 membranes for CO2 capture , 2011 .

[38]  Rajamani Krishna,et al.  In silico screening of zeolite membranes for CO2 capture , 2010 .

[39]  A. Samanta,et al.  Post-Combustion CO2 Capture Using Solid Sorbents: A Review , 2012 .

[40]  David Willson,et al.  Membrane gas separations and post-combustion carbon dioxide capture: Parametric sensitivity and process integration strategies , 2012 .

[41]  Dianne E. Wiley,et al.  Cost competitive membrane—cryogenic post-combustion carbon capture , 2013 .