Hybrid thermoelectric piezoelectric generator

This work presents an integration of flexible thermoelectric and piezoelectric materials into a single device structure. This device architecture overcomes several prohibitive issues facing the combination of traditional thermoelectric and piezoelectric generators, while optimizing performance of the combined power output. The structure design uses a carbon nanotube/polymer thin film as a flexible thermoelectric generator that doubles as an electrode on a piezoelectric generator made of poly(vinylidene fluoride). An example 2 × 2 array of devices is shown to generate 89% of the maximum thermoelectric power, and provide 5.3 times more piezoelectric voltage when compared with a traditional device.

[1]  Choongho Yu,et al.  N-Type Thermoelectric Performance of Functionalized Carbon Nanotube-Filled Polymer Composites , 2012, PloS one.

[2]  V. Kochervinskii Piezoelectricity in crystallizing ferroelectric polymers: Poly(vinylidene fluoride) and its copolymers (A review) , 2003 .

[3]  Jean-François Brun,et al.  Carbon nanotube-polyaniline nanohybrids: Influence of the carbon nanotube characteristics on the morphological, spectroscopic, electrical and thermoelectric properties , 2012 .

[4]  D. Carroll,et al.  Flexible thermoelectric fabrics based on self-assembled tellurium nanorods with a large power factor. , 2015, Physical chemistry chemical physics : PCCP.

[5]  Hua Zhang,et al.  Flexible carbon nanotube papers with improved thermoelectric properties , 2012 .

[6]  J. Sirohi,et al.  Fundamental Understanding of Piezoelectric Strain Sensors , 1999, Smart Structures.

[7]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[8]  Jaehwan Kim,et al.  A review of piezoelectric energy harvesting based on vibration , 2011 .

[9]  D. Inman,et al.  A Review of Power Harvesting from Vibration using Piezoelectric Materials , 2004 .

[10]  Paul K. Wright,et al.  A piezoelectric vibration based generator for wireless electronics , 2004 .

[11]  E. Shin,et al.  The influence of CNTs on the thermoelectric properties of a CNT/Bi2Te3 composite , 2013 .

[12]  D. Carroll,et al.  Improved thermoelectric power output from multilayered polyethylenimine doped carbon nanotube based organic composites , 2014 .

[13]  S. Lang,et al.  Review of some lesser-known applications of piezoelectric and pyroelectric polymers , 2006 .

[14]  Richard Czerw,et al.  Multilayered carbon nanotube/polymer composite based thermoelectric fabrics. , 2012, Nano letters.

[15]  Alic Chen,et al.  Printed Se-Doped MA n-Type Bi2Te3 Thick-Film Thermoelectric Generators , 2012, Journal of Electronic Materials.

[16]  Mario Leclerc,et al.  Conducting polymers: Efficient thermoelectric materials , 2011 .

[17]  L. Hope-weeks,et al.  Thermoelectric properties of porous multi-walled carbon nanotube/polyaniline core/shell nanocomposites , 2012, Nanotechnology.

[18]  D. Carroll,et al.  Spray doping method to create a low-profile high-density carbon nanotube thermoelectric generator , 2016 .

[19]  Choongho Yu,et al.  Light-weight flexible carbon nanotube based organic composites with large thermoelectric power factors. , 2011, ACS nano.

[20]  Henry A. Sodano,et al.  A review of power harvesting using piezoelectric materials (2003–2006) , 2007 .

[21]  Alex K.-Y. Jen,et al.  Rational Design of Advanced Thermoelectric Materials , 2013 .

[22]  Baoyang Lu,et al.  Improved Thermoelectric Performance of Free-Standing PEDOT:PSS/Bi2Te3 Films with Low Thermal Conductivity , 2013, Journal of Electronic Materials.

[23]  Terry M. Tritt,et al.  Thermoelectric Materials, Phenomena, and Applications: A Bird’s Eye View , 2006 .