Collapsibility of CAT(0) spaces

Collapsibility is a combinatorial strengthening of contractibility. We relate this property to metric geometry by proving the collapsibility of any complex that is $$\mathrm {CAT}(0)$$ CAT ( 0 ) with a metric for which all vertex stars are convex. This strengthens and generalizes a result by Crowley. Further consequences of our work are: (1) All $$\mathrm {CAT}(0)$$ CAT ( 0 ) cube complexes are collapsible. (2) Any triangulated manifold admits a $$\mathrm {CAT}(0)$$ CAT ( 0 ) metric if and only if it admits collapsible triangulations. (3) All contractible d -manifolds ( $$d \ne 4$$ d ≠ 4 ) admit collapsible $$\mathrm {CAT}(0)$$ CAT ( 0 ) triangulations. This discretizes a classical result by Ancel–Guilbault.

[1]  Bruno Benedetti,et al.  On locally constructible spheres and balls , 2009, 0902.0436.

[2]  Katherine Crowley,et al.  Simplicial collapsibility, discrete Morse theory, and the geometry of nonpositively curved simplicial complexes , 2008 .

[3]  V. Sharko,et al.  Functions on manifolds : algebraic and topological aspects , 1993 .

[4]  S. Gersten ISOPERIMETRIC AND ISODIAMETRIC FUNCTIONS OF FINITE PRESENTATIONS , 2019 .

[5]  Damrong Guoy,et al.  A dihedral acute triangulation of the cube , 2009, Comput. Geom..

[6]  S. Settepanella,et al.  Combinatorial Morse theory and minimality of hyperplane arrangements , 2007, 0705.2874.

[7]  J. Whitehead Simplicial Spaces, Nuclei and m‐Groups , 1939 .

[8]  Igor Pak,et al.  Acute triangulations of polyhedra and ℝN , 2009, Comb..

[9]  Victor Chepoi,et al.  Bridged Graphs Are Cop-Win Graphs: An Algorithmic Proof , 1997, J. Comb. Theory, Ser. B.

[10]  Volkmar Welker,et al.  Constructions preserving evasiveness and collapsibility , 1999, Discret. Math..

[11]  Bruno Benedetti Discrete Morse Theory for Manifolds with Boundary , 2010, 1007.3175.

[12]  J. Scott Provan,et al.  Decompositions of Simplicial Complexes Related to Diameters of Convex Polyhedra , 1980, Math. Oper. Res..

[13]  Jacques Tits,et al.  Groupes réductifs sur un corps local , 1972 .

[14]  Fredric D. Ancel,et al.  Interiors of compact contractible $n$-manifolds are hyperbolic $(n\geq 5)$ , 1997 .

[15]  H. Bandelt,et al.  Metric graph theory and geometry: a survey , 2006 .

[16]  Frank H. Lutz,et al.  Examples of Z-Acyclic and Contractible Vertex-Homogeneous Simplicial Complexes , 2002, Discret. Comput. Geom..

[17]  D. Burago,et al.  A Course in Metric Geometry , 2001 .

[18]  Etienne Gallais,et al.  Combinatorial realization of the Thom-Smale complex via discrete Morse theory , 2008, ArXiv.

[19]  Bruno Benedetti,et al.  The Hirsch Conjecture Holds for Normal Flag Complexes , 2014, Math. Oper. Res..

[20]  Karim A. Adiprasito,et al.  A Cheeger-type exponential bound for the number of triangulated manifolds , 2017, Annales de l’Institut Henri Poincaré D.

[21]  G. Ziegler Lectures on Polytopes , 1994 .

[22]  Louis J. Billera,et al.  Geometry of the Space of Phylogenetic Trees , 2001, Adv. Appl. Math..

[23]  Barry Mazur,et al.  A Note on Some Contractible 4-Manifolds , 1961 .

[24]  Seth Sullivant,et al.  Geodesics in CAT(0) Cubical Complexes , 2011, Adv. Appl. Math..

[25]  Gilbert Baumslag,et al.  Algorithms and Classification in Combinatorial Group Theory , 2011 .

[26]  D. R. J. Chillingworth,et al.  Collapsing three-dimensional convex polyhedra , 1967, Mathematical Proceedings of the Cambridge Philosophical Society.

[27]  Local convexity in CAT(\kappa)-spaces , 2012, 1211.1871.

[28]  Karim A. Adiprasito,et al.  Hyperbolicity of contractible manifolds , 2015 .

[29]  S. M. Gersten,et al.  Geometric Group Theory: Isoperimetric and Isodiametric Functions of Finite Presentations , 1993 .

[30]  Bruno Benedetti,et al.  Barycentric Subdivisions of Convex Complexes are Collapsible , 2017, Discrete & Computational Geometry.

[31]  Yusuf Civan,et al.  Linear colorings of simplicial complexes and collapsing , 2006, J. Comb. Theory, Ser. A.

[32]  M. Bridson,et al.  Metric Spaces of Non-Positive Curvature , 1999 .

[33]  M. Newman,et al.  Boundaries of ULC Sets in Euclidean n-Space. , 1948, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Karim A. Adiprasito Combinatorial stratifications and minimality of 2‐arrangements , 2012, 1211.1224.

[35]  David Galvin,et al.  A topological approach to evasiveness , 2010 .

[36]  Ruth Charney Metric Geometry: Connections with Combinatorics , 1994, Formal Power Series and Algebraic Combinatorics.

[37]  Victor Chepoi,et al.  Graphs of Some CAT(0) Complexes , 2000, Adv. Appl. Math..

[38]  T. Januszkiewicz,et al.  Hyperbolization of polyhedra , 1991 .

[39]  Nathan Linial,et al.  Collapsibility and Vanishing of Top Homology in Random Simplicial Complexes , 2010, Discret. Comput. Geom..

[40]  Bruno Benedetti Smoothing discrete Morse theory , 2012, 1212.0885.

[41]  J. Świa̧tkowski,et al.  Simplicial nonpositive curvature , 2006 .

[42]  Michael E. Saks,et al.  A topological approach to evasiveness , 1984, Comb..

[43]  S. Gersten Essays in Group Theory , 2011 .

[44]  J. Whitehead A CERTAIN OPEN MANIFOLD WHOSE GROUP IS UNITY , 1935 .

[45]  E. C. Zeeman,et al.  On the dunce hat , 1963 .

[46]  Jacques Tits,et al.  Groupes Réductifs Sur Un Corps Local , 1972 .

[47]  David Eppstein,et al.  Tiling space and slabs with acute tetrahedra , 2003, Comput. Geom..

[48]  J. Hudson Piecewise linear topology , 1966 .

[49]  Fredric D. Ancel,et al.  COMPACT CONTRACTIBLE n-MANIFOLDS HAVE ARC SPINES (n ≥ 5) , 2012 .

[50]  Fredric D. Ancel,et al.  Compact contractible $n$-manifolds have arc spines $(n\geq 5)$. , 1995 .

[51]  S. M. Gersten,et al.  Dehn functions and l1-norms of nite presentations , 1989 .

[52]  A. Björner Topological methods , 1996 .

[53]  R. Forman A USER'S GUIDE TO DISCRETE MORSE THEORY , 2002 .

[54]  Functions on manifolds , 1993 .

[55]  Michael W. Davis,et al.  NOTES ON NONPOSITIVELY CURVED POLYHEDRA , 2004 .

[56]  R. Forman Morse Theory for Cell Complexes , 1998 .

[57]  V. Chepoi,et al.  Dismantlability of weakly systolic complexes and applications , 2009, 0910.5444.